Step |
Hyp |
Ref |
Expression |
1 |
|
atlt.s |
⊢ < = ( lt ‘ 𝐾 ) |
2 |
|
atlt.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
atlt.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
5 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
6 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
7 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
8 |
1 2 3 7
|
atltcvr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 < ( 𝑃 ∨ 𝑄 ) ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
9 |
4 5 5 6 8
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 < ( 𝑃 ∨ 𝑄 ) ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
10 |
2 7 3
|
atcvr1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
11 |
9 10
|
bitr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 < ( 𝑃 ∨ 𝑄 ) ↔ 𝑃 ≠ 𝑄 ) ) |