| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atlt.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 2 |  | atlt.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | atlt.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝐾  ∈  HL ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ∈  𝐴 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑄  ∈  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 8 | 1 2 3 7 | atltcvr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  <  ( 𝑃  ∨  𝑄 )  ↔  𝑃 (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 9 | 4 5 5 6 8 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  <  ( 𝑃  ∨  𝑄 )  ↔  𝑃 (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 10 | 2 7 3 | atcvr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  ↔  𝑃 (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 11 | 9 10 | bitr4d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  <  ( 𝑃  ∨  𝑄 )  ↔  𝑃  ≠  𝑄 ) ) |