Metamath Proof Explorer


Theorem atlt

Description: Two atoms are unequal iff their join is greater than one of them. (Contributed by NM, 6-May-2012)

Ref Expression
Hypotheses atlt.s < = ( lt ‘ 𝐾 )
atlt.j = ( join ‘ 𝐾 )
atlt.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atlt ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 < ( 𝑃 𝑄 ) ↔ 𝑃𝑄 ) )

Proof

Step Hyp Ref Expression
1 atlt.s < = ( lt ‘ 𝐾 )
2 atlt.j = ( join ‘ 𝐾 )
3 atlt.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp1 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝐾 ∈ HL )
5 simp2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑃𝐴 )
6 simp3 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄𝐴 )
7 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
8 1 2 3 7 atltcvr ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑃𝐴𝑄𝐴 ) ) → ( 𝑃 < ( 𝑃 𝑄 ) ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 𝑄 ) ) )
9 4 5 5 6 8 syl13anc ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 < ( 𝑃 𝑄 ) ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 𝑄 ) ) )
10 2 7 3 atcvr1 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃𝑄𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑃 𝑄 ) ) )
11 9 10 bitr4d ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 < ( 𝑃 𝑄 ) ↔ 𝑃𝑄 ) )