Metamath Proof Explorer


Theorem atmd

Description: Two Hilbert lattice elements have the modular pair property if the first is an atom. Theorem 7.6(b) of MaedaMaeda p. 31. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atmd ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → 𝐴 𝑀 𝐵 )

Proof

Step Hyp Ref Expression
1 atdmd ( ( 𝐴 ∈ HAtoms ∧ 𝑥C ) → 𝐴 𝑀* 𝑥 )
2 1 ralrimiva ( 𝐴 ∈ HAtoms → ∀ 𝑥C 𝐴 𝑀* 𝑥 )
3 atelch ( 𝐴 ∈ HAtoms → 𝐴C )
4 mddmd2 ( 𝐴C → ( ∀ 𝑥C 𝐴 𝑀 𝑥 ↔ ∀ 𝑥C 𝐴 𝑀* 𝑥 ) )
5 3 4 syl ( 𝐴 ∈ HAtoms → ( ∀ 𝑥C 𝐴 𝑀 𝑥 ↔ ∀ 𝑥C 𝐴 𝑀* 𝑥 ) )
6 2 5 mpbird ( 𝐴 ∈ HAtoms → ∀ 𝑥C 𝐴 𝑀 𝑥 )
7 breq2 ( 𝑥 = 𝐵 → ( 𝐴 𝑀 𝑥𝐴 𝑀 𝐵 ) )
8 7 rspcv ( 𝐵C → ( ∀ 𝑥C 𝐴 𝑀 𝑥𝐴 𝑀 𝐵 ) )
9 6 8 mpan9 ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → 𝐴 𝑀 𝐵 )