Metamath Proof Explorer


Theorem atmd2

Description: Two Hilbert lattice elements have the dual modular pair property if the second is an atom. Part of Exercise 6 of Kalmbach p. 103. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atmd2 ( ( 𝐴C𝐵 ∈ HAtoms ) → 𝐴 𝑀 𝐵 )

Proof

Step Hyp Ref Expression
1 cvp ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ( 𝐴𝐵 ) = 0𝐴 ( 𝐴 𝐵 ) ) )
2 atelch ( 𝐵 ∈ HAtoms → 𝐵C )
3 cvexch ( ( 𝐴C𝐵C ) → ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 ( 𝐴 𝐵 ) ) )
4 cvmd ( ( 𝐴C𝐵C ∧ ( 𝐴𝐵 ) ⋖ 𝐵 ) → 𝐴 𝑀 𝐵 )
5 4 3expia ( ( 𝐴C𝐵C ) → ( ( 𝐴𝐵 ) ⋖ 𝐵𝐴 𝑀 𝐵 ) )
6 3 5 sylbird ( ( 𝐴C𝐵C ) → ( 𝐴 ( 𝐴 𝐵 ) → 𝐴 𝑀 𝐵 ) )
7 2 6 sylan2 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( 𝐴 ( 𝐴 𝐵 ) → 𝐴 𝑀 𝐵 ) )
8 1 7 sylbid ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ( 𝐴𝐵 ) = 0𝐴 𝑀 𝐵 ) )
9 atnssm0 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ¬ 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 0 ) )
10 9 con1bid ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ¬ ( 𝐴𝐵 ) = 0𝐵𝐴 ) )
11 ssmd2 ( ( 𝐵C𝐴C𝐵𝐴 ) → 𝐴 𝑀 𝐵 )
12 11 3com12 ( ( 𝐴C𝐵C𝐵𝐴 ) → 𝐴 𝑀 𝐵 )
13 2 12 syl3an2 ( ( 𝐴C𝐵 ∈ HAtoms ∧ 𝐵𝐴 ) → 𝐴 𝑀 𝐵 )
14 13 3expia ( ( 𝐴C𝐵 ∈ HAtoms ) → ( 𝐵𝐴𝐴 𝑀 𝐵 ) )
15 10 14 sylbid ( ( 𝐴C𝐵 ∈ HAtoms ) → ( ¬ ( 𝐴𝐵 ) = 0𝐴 𝑀 𝐵 ) )
16 8 15 pm2.61d ( ( 𝐴C𝐵 ∈ HAtoms ) → 𝐴 𝑀 𝐵 )