Step |
Hyp |
Ref |
Expression |
1 |
|
cvp |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
2 |
|
atelch |
⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) |
3 |
|
cvexch |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
4 |
|
cvmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 ) → 𝐴 𝑀ℋ 𝐵 ) |
5 |
4
|
3expia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⋖ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵 ) ) |
6 |
3 5
|
sylbird |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ 𝐵 ) ) |
7 |
2 6
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ 𝐵 ) ) |
8 |
1 7
|
sylbid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → 𝐴 𝑀ℋ 𝐵 ) ) |
9 |
|
atnssm0 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |
10 |
9
|
con1bid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐵 ⊆ 𝐴 ) ) |
11 |
|
ssmd2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 𝑀ℋ 𝐵 ) |
12 |
11
|
3com12 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 𝑀ℋ 𝐵 ) |
13 |
2 12
|
syl3an2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 𝑀ℋ 𝐵 ) |
14 |
13
|
3expia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( 𝐵 ⊆ 𝐴 → 𝐴 𝑀ℋ 𝐵 ) ) |
15 |
10 14
|
sylbid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ ( 𝐴 ∩ 𝐵 ) = 0ℋ → 𝐴 𝑀ℋ 𝐵 ) ) |
16 |
8 15
|
pm2.61d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → 𝐴 𝑀ℋ 𝐵 ) |