Description: An atom is not zero. ( atne0 analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atne0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| atne0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atn0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atne0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 2 | atne0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | 3 4 1 2 | isat3 | ⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) ) ) |
| 6 | simp2 | ⊢ ( ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ≠ 0 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑃 → ( 𝑥 = 𝑃 ∨ 𝑥 = 0 ) ) ) → 𝑃 ≠ 0 ) | |
| 7 | 5 6 | biimtrdi | ⊢ ( 𝐾 ∈ AtLat → ( 𝑃 ∈ 𝐴 → 𝑃 ≠ 0 ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ≠ 0 ) |