Metamath Proof Explorer


Theorem atncmp

Description: Frequently-used variation of atcmp . (Contributed by NM, 29-Jun-2012)

Ref Expression
Hypotheses atcmp.l = ( le ‘ 𝐾 )
atcmp.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atncmp ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴 ) → ( ¬ 𝑃 𝑄𝑃𝑄 ) )

Proof

Step Hyp Ref Expression
1 atcmp.l = ( le ‘ 𝐾 )
2 atcmp.a 𝐴 = ( Atoms ‘ 𝐾 )
3 1 2 atcmp ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄𝑃 = 𝑄 ) )
4 3 necon3bbid ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴 ) → ( ¬ 𝑃 𝑄𝑃𝑄 ) )