Metamath Proof Explorer
		
		
		
		Description:  Frequently-used variation of atcmp .  (Contributed by NM, 29-Jun-2012)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						atcmp.l | 
						⊢  ≤   =  ( le ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						atcmp.a | 
						⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
					
				
					 | 
					Assertion | 
					atncmp | 
					⊢  ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( ¬  𝑃  ≤  𝑄  ↔  𝑃  ≠  𝑄 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atcmp.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							atcmp.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							atcmp | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≤  𝑄  ↔  𝑃  =  𝑄 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							necon3bbid | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( ¬  𝑃  ≤  𝑄  ↔  𝑃  ≠  𝑄 ) )  |