Metamath Proof Explorer
Description: Frequently-used variation of atcmp . (Contributed by NM, 29-Jun-2012)
|
|
Ref |
Expression |
|
Hypotheses |
atcmp.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
atcmp.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
|
Assertion |
atncmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑄 ↔ 𝑃 ≠ 𝑄 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
atcmp.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
atcmp.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
1 2
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
4 |
3
|
necon3bbid |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑄 ↔ 𝑃 ≠ 𝑄 ) ) |