Description: An atom is not the Hilbert lattice zero. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atne0 | ⊢ ( 𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elat2 | ⊢ ( 𝐴 ∈ HAtoms ↔ ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) ) | |
| 2 | simprl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ≠ 0ℋ ∧ ∀ 𝑥 ∈ Cℋ ( 𝑥 ⊆ 𝐴 → ( 𝑥 = 𝐴 ∨ 𝑥 = 0ℋ ) ) ) ) → 𝐴 ≠ 0ℋ ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ ) |