Step |
Hyp |
Ref |
Expression |
1 |
|
atnem0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
2 |
|
atnem0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
atnem0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
4 3
|
atncmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑄 ↔ 𝑃 ≠ 𝑄 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
6 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
8 |
6 4 1 2 3
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑄 ↔ ( 𝑃 ∧ 𝑄 ) = 0 ) ) |
9 |
7 8
|
syl3an3 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑄 ↔ ( 𝑃 ∧ 𝑄 ) = 0 ) ) |
10 |
5 9
|
bitr3d |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 ↔ ( 𝑃 ∧ 𝑄 ) = 0 ) ) |