| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atsseq | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  𝐴  ∈  HAtoms )  →  ( 𝐵  ⊆  𝐴  ↔  𝐵  =  𝐴 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							bitrdi | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  𝐴  ∈  HAtoms )  →  ( 𝐵  ⊆  𝐴  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈  HAtoms )  →  ( 𝐵  ⊆  𝐴  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							necon3bbid | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈  HAtoms )  →  ( ¬  𝐵  ⊆  𝐴  ↔  𝐴  ≠  𝐵 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							atelch | 
							⊢ ( 𝐴  ∈  HAtoms  →  𝐴  ∈   Cℋ  )  | 
						
						
							| 7 | 
							
								
							 | 
							atnssm0 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈  HAtoms )  →  ( ¬  𝐵  ⊆  𝐴  ↔  ( 𝐴  ∩  𝐵 )  =  0ℋ ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈  HAtoms )  →  ( ¬  𝐵  ⊆  𝐴  ↔  ( 𝐴  ∩  𝐵 )  =  0ℋ ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							bitr3d | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈  HAtoms )  →  ( 𝐴  ≠  𝐵  ↔  ( 𝐴  ∩  𝐵 )  =  0ℋ ) )  |