Metamath Proof Explorer


Theorem atnle0

Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011)

Ref Expression
Hypotheses atnle0.l = ( le ‘ 𝐾 )
atnle0.z 0 = ( 0. ‘ 𝐾 )
atnle0.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atnle0 ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → ¬ 𝑃 0 )

Proof

Step Hyp Ref Expression
1 atnle0.l = ( le ‘ 𝐾 )
2 atnle0.z 0 = ( 0. ‘ 𝐾 )
3 atnle0.a 𝐴 = ( Atoms ‘ 𝐾 )
4 atlpos ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset )
5 4 adantr ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → 𝐾 ∈ Poset )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 6 2 atl0cl ( 𝐾 ∈ AtLat → 0 ∈ ( Base ‘ 𝐾 ) )
8 7 adantr ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → 0 ∈ ( Base ‘ 𝐾 ) )
9 6 3 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
10 9 adantl ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
11 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
12 2 11 3 atcvr0 ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 )
13 6 1 11 cvrnle ( ( ( 𝐾 ∈ Poset ∧ 0 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) → ¬ 𝑃 0 )
14 5 8 10 12 13 syl31anc ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴 ) → ¬ 𝑃 0 )