Step |
Hyp |
Ref |
Expression |
1 |
|
atnle0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
atnle0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
atnle0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
atlpos |
⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
6 2
|
atl0cl |
⊢ ( 𝐾 ∈ AtLat → 0 ∈ ( Base ‘ 𝐾 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 0 ∈ ( Base ‘ 𝐾 ) ) |
9 |
6 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
11 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
12 |
2 11 3
|
atcvr0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
13 |
6 1 11
|
cvrnle |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 0 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) → ¬ 𝑃 ≤ 0 ) |
14 |
5 8 10 12 13
|
syl31anc |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ) → ¬ 𝑃 ≤ 0 ) |