Step |
Hyp |
Ref |
Expression |
1 |
|
atnlej.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
atnlej.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
atnlej.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝐾 ∈ Lat ) |
6 |
|
simp21 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ∈ 𝐴 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
7 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
9 |
6 8
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
10 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ∈ 𝐴 ) |
11 |
7 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
13 |
|
simp23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ∈ 𝐴 ) |
14 |
7 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) |
17 |
7 1 2
|
latnlej1l |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ≠ 𝑄 ) |
18 |
5 9 12 15 16 17
|
syl131anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ≠ 𝑄 ) |