| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atnlt.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							atnlt.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								1
							 | 
							pltirr | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴 )  →  ¬  𝑃  <  𝑃 )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ¬  𝑃  <  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑃  =  𝑄  →  ( 𝑃  <  𝑃  ↔  𝑃  <  𝑄 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							notbid | 
							⊢ ( 𝑃  =  𝑄  →  ( ¬  𝑃  <  𝑃  ↔  ¬  𝑃  <  𝑄 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							syl5ibcom | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  =  𝑄  →  ¬  𝑃  <  𝑄 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							pltle | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  <  𝑄  →  𝑃 ( le ‘ 𝐾 ) 𝑄 ) )  | 
						
						
							| 10 | 
							
								8 2
							 | 
							atcmp | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃 ( le ‘ 𝐾 ) 𝑄  ↔  𝑃  =  𝑄 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylibd | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  <  𝑄  →  𝑃  =  𝑄 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							necon3ad | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  →  ¬  𝑃  <  𝑄 ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							pm2.61dne | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ¬  𝑃  <  𝑄 )  |