Description: The meet of a Hilbert lattice element and an incomparable atom is the zero subspace. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atnssm0 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chcv1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
| 2 | cvp | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
| 3 | 1 2 | bitr4d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) ) |