| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atoml.1 | 
							⊢ 𝐴  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							atelch | 
							⊢ ( 𝐵  ∈  HAtoms  →  𝐵  ∈   Cℋ  )  | 
						
						
							| 3 | 
							
								
							 | 
							chjcl | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ  )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							sylancr | 
							⊢ ( 𝐵  ∈  HAtoms  →  ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ  )  | 
						
						
							| 5 | 
							
								1
							 | 
							choccli | 
							⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ   | 
						
						
							| 6 | 
							
								
							 | 
							chincl | 
							⊢ ( ( ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈   Cℋ  )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							sylancl | 
							⊢ ( 𝐵  ∈  HAtoms  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈   Cℋ  )  | 
						
						
							| 8 | 
							
								
							 | 
							hatomic | 
							⊢ ( ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈   Cℋ   ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ )  →  ∃ 𝑥  ∈  HAtoms 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylan | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ )  →  ∃ 𝑥  ∈  HAtoms 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							atelch | 
							⊢ ( 𝑥  ∈  HAtoms  →  𝑥  ∈   Cℋ  )  | 
						
						
							| 11 | 
							
								
							 | 
							inss2 | 
							⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ⊆  ( ⊥ ‘ 𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							sstr | 
							⊢ ( ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ⊆  ( ⊥ ‘ 𝐴 ) )  →  𝑥  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							mpan2 | 
							⊢ ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  →  𝑥  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							pjococi | 
							⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  =  𝐴  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1i | 
							⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∨ℋ  𝑥 )  =  ( 𝐴  ∨ℋ  𝑥 )  | 
						
						
							| 16 | 
							
								15
							 | 
							ineq1i | 
							⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∨ℋ  𝑥 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  ( ( 𝐴  ∨ℋ  𝑥 )  ∩  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							incom | 
							⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∨ℋ  𝑥 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∨ℋ  𝑥 ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqtr3i | 
							⊢ ( ( 𝐴  ∨ℋ  𝑥 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∨ℋ  𝑥 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							pjoml3 | 
							⊢ ( ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  ( 𝑥  ⊆  ( ⊥ ‘ 𝐴 )  →  ( ( ⊥ ‘ 𝐴 )  ∩  ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∨ℋ  𝑥 ) )  =  𝑥 ) )  | 
						
						
							| 20 | 
							
								5 19
							 | 
							mpan | 
							⊢ ( 𝑥  ∈   Cℋ   →  ( 𝑥  ⊆  ( ⊥ ‘ 𝐴 )  →  ( ( ⊥ ‘ 𝐴 )  ∩  ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∨ℋ  𝑥 ) )  =  𝑥 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imp | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝑥  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ( ( ⊥ ‘ 𝐴 )  ∩  ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∨ℋ  𝑥 ) )  =  𝑥 )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							eqtrid | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝑥  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ( ( 𝐴  ∨ℋ  𝑥 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  𝑥 )  | 
						
						
							| 23 | 
							
								10 13 22
							 | 
							syl2an | 
							⊢ ( ( 𝑥  ∈  HAtoms  ∧  𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  →  ( ( 𝐴  ∨ℋ  𝑥 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  𝑥 )  | 
						
						
							| 24 | 
							
								23
							 | 
							ad2ant2lr | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( ( 𝐴  ∨ℋ  𝑥 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  𝑥 )  | 
						
						
							| 25 | 
							
								
							 | 
							inss1 | 
							⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ⊆  ( 𝐴  ∨ℋ  𝐵 )  | 
						
						
							| 26 | 
							
								
							 | 
							sstr | 
							⊢ ( ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  →  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							mpan2 | 
							⊢ ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  →  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							chub1 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 29 | 
							
								1 28
							 | 
							mpan | 
							⊢ ( 𝐵  ∈   Cℋ   →  𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 31 | 
							
								1 3
							 | 
							mpan | 
							⊢ ( 𝐵  ∈   Cℋ   →  ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ  )  | 
						
						
							| 32 | 
							
								
							 | 
							chlub | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   Cℋ   ∧  ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  ↔  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 33 | 
							
								1 32
							 | 
							mp3an1 | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  ↔  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 34 | 
							
								31 33
							 | 
							sylan2 | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  ↔  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							biimpd | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  →  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ancoms | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  →  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 37 | 
							
								30 36
							 | 
							mpand | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  ( 𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 )  →  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 38 | 
							
								2 10 37
							 | 
							syl2an | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  →  ( 𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 )  →  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							imp | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  →  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 40 | 
							
								27 39
							 | 
							sylan2 | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  →  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantrr | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( 𝐴  ∨ℋ  𝑥 )  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							chjcl | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  ( 𝐴  ∨ℋ  𝑥 )  ∈   Cℋ  )  | 
						
						
							| 43 | 
							
								1 10 42
							 | 
							sylancr | 
							⊢ ( 𝑥  ∈  HAtoms  →  ( 𝐴  ∨ℋ  𝑥 )  ∈   Cℋ  )  | 
						
						
							| 44 | 
							
								2 43
							 | 
							anim12i | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  →  ( 𝐵  ∈   Cℋ   ∧  ( 𝐴  ∨ℋ  𝑥 )  ∈   Cℋ  ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantr | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( 𝐵  ∈   Cℋ   ∧  ( 𝐴  ∨ℋ  𝑥 )  ∈   Cℋ  ) )  | 
						
						
							| 46 | 
							
								
							 | 
							chub1 | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈   Cℋ  )  →  𝐴  ⊆  ( 𝐴  ∨ℋ  𝑥 ) )  | 
						
						
							| 47 | 
							
								1 10 46
							 | 
							sylancr | 
							⊢ ( 𝑥  ∈  HAtoms  →  𝐴  ⊆  ( 𝐴  ∨ℋ  𝑥 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  𝐴  ⊆  ( 𝐴  ∨ℋ  𝑥 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							pm3.22 | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  →  ( 𝑥  ∈  HAtoms  ∧  𝐵  ∈  HAtoms ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							adantr | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( 𝑥  ∈  HAtoms  ∧  𝐵  ∈  HAtoms ) )  | 
						
						
							| 51 | 
							
								27
							 | 
							adantl | 
							⊢ ( ( 𝑥  ∈  HAtoms  ∧  𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  →  𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 52 | 
							
								
							 | 
							incom | 
							⊢ ( 𝐴  ∩  𝑥 )  =  ( 𝑥  ∩  𝐴 )  | 
						
						
							| 53 | 
							
								
							 | 
							chsh | 
							⊢ ( 𝑥  ∈   Cℋ   →  𝑥  ∈   Sℋ  )  | 
						
						
							| 54 | 
							
								1
							 | 
							chshii | 
							⊢ 𝐴  ∈   Sℋ   | 
						
						
							| 55 | 
							
								
							 | 
							orthin | 
							⊢ ( ( 𝑥  ∈   Sℋ   ∧  𝐴  ∈   Sℋ  )  →  ( 𝑥  ⊆  ( ⊥ ‘ 𝐴 )  →  ( 𝑥  ∩  𝐴 )  =  0ℋ ) )  | 
						
						
							| 56 | 
							
								53 54 55
							 | 
							sylancl | 
							⊢ ( 𝑥  ∈   Cℋ   →  ( 𝑥  ⊆  ( ⊥ ‘ 𝐴 )  →  ( 𝑥  ∩  𝐴 )  =  0ℋ ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							imp | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝑥  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ( 𝑥  ∩  𝐴 )  =  0ℋ )  | 
						
						
							| 58 | 
							
								52 57
							 | 
							eqtrid | 
							⊢ ( ( 𝑥  ∈   Cℋ   ∧  𝑥  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ( 𝐴  ∩  𝑥 )  =  0ℋ )  | 
						
						
							| 59 | 
							
								10 13 58
							 | 
							syl2an | 
							⊢ ( ( 𝑥  ∈  HAtoms  ∧  𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  →  ( 𝐴  ∩  𝑥 )  =  0ℋ )  | 
						
						
							| 60 | 
							
								51 59
							 | 
							jca | 
							⊢ ( ( 𝑥  ∈  HAtoms  ∧  𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  →  ( 𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝐴  ∩  𝑥 )  =  0ℋ ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							ad2ant2lr | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( 𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝐴  ∩  𝑥 )  =  0ℋ ) )  | 
						
						
							| 62 | 
							
								
							 | 
							atexch | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝑥  ∈  HAtoms  ∧  𝐵  ∈  HAtoms )  →  ( ( 𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝐴  ∩  𝑥 )  =  0ℋ )  →  𝐵  ⊆  ( 𝐴  ∨ℋ  𝑥 ) ) )  | 
						
						
							| 63 | 
							
								1 62
							 | 
							mp3an1 | 
							⊢ ( ( 𝑥  ∈  HAtoms  ∧  𝐵  ∈  HAtoms )  →  ( ( 𝑥  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ∧  ( 𝐴  ∩  𝑥 )  =  0ℋ )  →  𝐵  ⊆  ( 𝐴  ∨ℋ  𝑥 ) ) )  | 
						
						
							| 64 | 
							
								50 61 63
							 | 
							sylc | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  𝐵  ⊆  ( 𝐴  ∨ℋ  𝑥 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							chlub | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  ( 𝐴  ∨ℋ  𝑥 )  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝑥 )  ∧  𝐵  ⊆  ( 𝐴  ∨ℋ  𝑥 ) )  ↔  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝑥 ) ) )  | 
						
						
							| 66 | 
							
								1 65
							 | 
							mp3an1 | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  ( 𝐴  ∨ℋ  𝑥 )  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝑥 )  ∧  𝐵  ⊆  ( 𝐴  ∨ℋ  𝑥 ) )  ↔  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝑥 ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							biimpd | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  ( 𝐴  ∨ℋ  𝑥 )  ∈   Cℋ  )  →  ( ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝑥 )  ∧  𝐵  ⊆  ( 𝐴  ∨ℋ  𝑥 ) )  →  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝑥 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							expd | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  ( 𝐴  ∨ℋ  𝑥 )  ∈   Cℋ  )  →  ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝑥 )  →  ( 𝐵  ⊆  ( 𝐴  ∨ℋ  𝑥 )  →  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝑥 ) ) ) )  | 
						
						
							| 69 | 
							
								45 48 64 68
							 | 
							syl3c | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( 𝐴  ∨ℋ  𝐵 )  ⊆  ( 𝐴  ∨ℋ  𝑥 ) )  | 
						
						
							| 70 | 
							
								41 69
							 | 
							eqssd | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( 𝐴  ∨ℋ  𝑥 )  =  ( 𝐴  ∨ℋ  𝐵 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							ineq1d | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( ( 𝐴  ∨ℋ  𝑥 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 72 | 
							
								24 71
							 | 
							eqtr3d | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  𝑥  =  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							eleq1d | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  𝑥  ∈  HAtoms )  ∧  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ ) )  →  ( 𝑥  ∈  HAtoms  ↔  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							exp43 | 
							⊢ ( 𝐵  ∈  HAtoms  →  ( 𝑥  ∈  HAtoms  →  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  →  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ  →  ( 𝑥  ∈  HAtoms  ↔  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) ) ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							com24 | 
							⊢ ( 𝐵  ∈  HAtoms  →  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ  →  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  →  ( 𝑥  ∈  HAtoms  →  ( 𝑥  ∈  HAtoms  ↔  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							imp31 | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ )  ∧  𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  →  ( 𝑥  ∈  HAtoms  →  ( 𝑥  ∈  HAtoms  ↔  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ibd | 
							⊢ ( ( ( 𝐵  ∈  HAtoms  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ )  ∧  𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) ) )  →  ( 𝑥  ∈  HAtoms  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							ex | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ )  →  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  →  ( 𝑥  ∈  HAtoms  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							com23 | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ )  →  ( 𝑥  ∈  HAtoms  →  ( 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							rexlimdv | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ )  →  ( ∃ 𝑥  ∈  HAtoms 𝑥  ⊆  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) )  | 
						
						
							| 81 | 
							
								9 80
							 | 
							mpd | 
							⊢ ( ( 𝐵  ∈  HAtoms  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ )  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms )  | 
						
						
							| 82 | 
							
								81
							 | 
							ex | 
							⊢ ( 𝐵  ∈  HAtoms  →  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ≠  0ℋ  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							necon1bd | 
							⊢ ( 𝐵  ∈  HAtoms  →  ( ¬  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							orrd | 
							⊢ ( 𝐵  ∈  HAtoms  →  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms  ∨  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ ) )  | 
						
						
							| 85 | 
							
								
							 | 
							elun | 
							⊢ ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  ( HAtoms  ∪  { 0ℋ } )  ↔  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms  ∨  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  { 0ℋ } ) )  | 
						
						
							| 86 | 
							
								
							 | 
							fvex | 
							⊢ ( ⊥ ‘ 𝐴 )  ∈  V  | 
						
						
							| 87 | 
							
								86
							 | 
							inex2 | 
							⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  V  | 
						
						
							| 88 | 
							
								87
							 | 
							elsn | 
							⊢ ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  { 0ℋ }  ↔  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ )  | 
						
						
							| 89 | 
							
								88
							 | 
							orbi2i | 
							⊢ ( ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms  ∨  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  { 0ℋ } )  ↔  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms  ∨  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ ) )  | 
						
						
							| 90 | 
							
								85 89
							 | 
							bitri | 
							⊢ ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  ( HAtoms  ∪  { 0ℋ } )  ↔  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  HAtoms  ∨  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ ) )  | 
						
						
							| 91 | 
							
								84 90
							 | 
							sylibr | 
							⊢ ( 𝐵  ∈  HAtoms  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈  ( HAtoms  ∪  { 0ℋ } ) )  |