Metamath Proof Explorer


Theorem atord

Description: An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion atord ( ( 𝐴C𝐵 ∈ HAtoms ∧ 𝐴 𝐶 𝐵 ) → ( 𝐵𝐴𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 𝐶 𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) 𝐶 𝐵 ) )
2 1 anbi2d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶 𝐵 ) ↔ ( 𝐵 ∈ HAtoms ∧ if ( 𝐴C , 𝐴 , 0 ) 𝐶 𝐵 ) ) )
3 sseq2 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐵𝐴𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ) )
4 fveq2 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) )
5 4 sseq2d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ↔ 𝐵 ⊆ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) )
6 3 5 orbi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐵𝐴𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ↔ ( 𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ⊆ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) ) )
7 2 6 imbi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶 𝐵 ) → ( 𝐵𝐴𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) ↔ ( ( 𝐵 ∈ HAtoms ∧ if ( 𝐴C , 𝐴 , 0 ) 𝐶 𝐵 ) → ( 𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ⊆ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) ) ) )
8 h0elch 0C
9 8 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
10 9 atordi ( ( 𝐵 ∈ HAtoms ∧ if ( 𝐴C , 𝐴 , 0 ) 𝐶 𝐵 ) → ( 𝐵 ⊆ if ( 𝐴C , 𝐴 , 0 ) ∨ 𝐵 ⊆ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) )
11 7 10 dedth ( 𝐴C → ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶 𝐵 ) → ( 𝐵𝐴𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) )
12 11 3impib ( ( 𝐴C𝐵 ∈ HAtoms ∧ 𝐴 𝐶 𝐵 ) → ( 𝐵𝐴𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) )