| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atoml.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
atelch |
⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) |
| 3 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 |
|
chincl |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ ) |
| 5 |
3 4
|
mpan |
⊢ ( 𝐵 ∈ Cℋ → ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ ) |
| 6 |
|
chj0 |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ → ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∨ℋ 0ℋ ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝐵 ∈ Cℋ → ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∨ℋ 0ℋ ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
| 8 |
|
incom |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) |
| 9 |
7 8
|
eqtrdi |
⊢ ( 𝐵 ∈ Cℋ → ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∨ℋ 0ℋ ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) |
| 10 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
| 11 |
|
chjcom |
⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ ∧ 0ℋ ∈ Cℋ ) → ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∨ℋ 0ℋ ) = ( 0ℋ ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 12 |
5 10 11
|
sylancl |
⊢ ( 𝐵 ∈ Cℋ → ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∨ℋ 0ℋ ) = ( 0ℋ ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 13 |
9 12
|
eqtr3d |
⊢ ( 𝐵 ∈ Cℋ → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( 0ℋ ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 14 |
|
incom |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) |
| 15 |
1
|
chocini |
⊢ ( 𝐴 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ |
| 16 |
14 15
|
eqtri |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) = 0ℋ |
| 17 |
16
|
oveq1i |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( 0ℋ ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
| 18 |
13 17
|
eqtr4di |
⊢ ( 𝐵 ∈ Cℋ → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵 ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 20 |
1
|
cmidi |
⊢ 𝐴 𝐶ℋ 𝐴 |
| 21 |
1 1 20
|
cmcm2ii |
⊢ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐴 ) |
| 22 |
|
fh2 |
⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐴 ) ∧ 𝐴 𝐶ℋ 𝐵 ) ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 23 |
21 22
|
mpanr1 |
⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 𝐶ℋ 𝐵 ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 24 |
1 23
|
mp3anl2 |
⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 𝐶ℋ 𝐵 ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 25 |
3 24
|
mpanl1 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵 ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐴 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 26 |
19 25
|
eqtr4d |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 𝐶ℋ 𝐵 ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 27 |
2 26
|
sylan |
⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 28 |
|
incom |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) |
| 29 |
27 28
|
eqtrdi |
⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) ∧ ¬ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ) |
| 31 |
1
|
atoml2i |
⊢ ( ( 𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∈ HAtoms ) |
| 32 |
31
|
adantlr |
⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) ∧ ¬ 𝐵 ⊆ 𝐴 ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∈ HAtoms ) |
| 33 |
30 32
|
eqeltrd |
⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) ∧ ¬ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∈ HAtoms ) |
| 34 |
|
atssma |
⊢ ( ( 𝐵 ∈ HAtoms ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∈ HAtoms ) ) |
| 35 |
3 34
|
mpan2 |
⊢ ( 𝐵 ∈ HAtoms → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∈ HAtoms ) ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) ∧ ¬ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∈ HAtoms ) ) |
| 37 |
33 36
|
mpbird |
⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) ∧ ¬ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 38 |
37
|
ex |
⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) → ( ¬ 𝐵 ⊆ 𝐴 → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 39 |
38
|
orrd |
⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵 ) → ( 𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |