Step |
Hyp |
Ref |
Expression |
1 |
|
ispoint.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
ispoint.p |
⊢ 𝑃 = ( Points ‘ 𝐾 ) |
3 |
|
eqid |
⊢ { 𝑋 } = { 𝑋 } |
4 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
5 |
4
|
rspceeqv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ { 𝑋 } = { 𝑋 } ) → ∃ 𝑥 ∈ 𝐴 { 𝑋 } = { 𝑥 } ) |
6 |
3 5
|
mpan2 |
⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 { 𝑋 } = { 𝑥 } ) |
7 |
6
|
adantl |
⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 { 𝑋 } = { 𝑥 } ) |
8 |
1 2
|
ispointN |
⊢ ( 𝐾 ∈ 𝐷 → ( { 𝑋 } ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐴 { 𝑋 } = { 𝑥 } ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴 ) → ( { 𝑋 } ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐴 { 𝑋 } = { 𝑥 } ) ) |
10 |
7 9
|
mpbird |
⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐴 ) → { 𝑋 } ∈ 𝑃 ) |