| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∩  𝐵 )  =  𝐴 )  | 
						
						
							| 2 | 
							
								1
							 | 
							biimpi | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐴  ∩  𝐵 )  =  𝐴 )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq1d | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( ( 𝐴  ∩  𝐵 )  ∈  HAtoms  ↔  𝐴  ∈  HAtoms ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimprcd | 
							⊢ ( 𝐴  ∈  HAtoms  →  ( 𝐴  ⊆  𝐵  →  ( 𝐴  ∩  𝐵 )  ∈  HAtoms ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊆  𝐵  →  ( 𝐴  ∩  𝐵 )  ∈  HAtoms ) )  | 
						
						
							| 6 | 
							
								
							 | 
							incom | 
							⊢ ( 𝐴  ∩  𝐵 )  =  ( 𝐵  ∩  𝐴 )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq1i | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ∈  HAtoms  ↔  ( 𝐵  ∩  𝐴 )  ∈  HAtoms )  | 
						
						
							| 8 | 
							
								
							 | 
							atne0 | 
							⊢ ( ( 𝐵  ∩  𝐴 )  ∈  HAtoms  →  ( 𝐵  ∩  𝐴 )  ≠  0ℋ )  | 
						
						
							| 9 | 
							
								8
							 | 
							neneqd | 
							⊢ ( ( 𝐵  ∩  𝐴 )  ∈  HAtoms  →  ¬  ( 𝐵  ∩  𝐴 )  =  0ℋ )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							sylbi | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ∈  HAtoms  →  ¬  ( 𝐵  ∩  𝐴 )  =  0ℋ )  | 
						
						
							| 11 | 
							
								
							 | 
							atnssm0 | 
							⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝐴  ∈  HAtoms )  →  ( ¬  𝐴  ⊆  𝐵  ↔  ( 𝐵  ∩  𝐴 )  =  0ℋ ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈   Cℋ  )  →  ( ¬  𝐴  ⊆  𝐵  ↔  ( 𝐵  ∩  𝐴 )  =  0ℋ ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							biimpd | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈   Cℋ  )  →  ( ¬  𝐴  ⊆  𝐵  →  ( 𝐵  ∩  𝐴 )  =  0ℋ ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							con1d | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈   Cℋ  )  →  ( ¬  ( 𝐵  ∩  𝐴 )  =  0ℋ  →  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							syl5 | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈   Cℋ  )  →  ( ( 𝐴  ∩  𝐵 )  ∈  HAtoms  →  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							impbid | 
							⊢ ( ( 𝐴  ∈  HAtoms  ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∩  𝐵 )  ∈  HAtoms ) )  |