| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ausgr.1 |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } |
| 2 |
|
fvex |
⊢ ( Vtx ‘ 𝐻 ) ∈ V |
| 3 |
|
fvex |
⊢ ( Edg ‘ 𝐻 ) ∈ V |
| 4 |
1
|
isausgr |
⊢ ( ( ( Vtx ‘ 𝐻 ) ∈ V ∧ ( Edg ‘ 𝐻 ) ∈ V ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 5 |
2 3 4
|
mp2an |
⊢ ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 6 |
|
edgval |
⊢ ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) |
| 7 |
6
|
a1i |
⊢ ( 𝐻 ∈ 𝑊 → ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) ) |
| 8 |
7
|
sseq1d |
⊢ ( 𝐻 ∈ 𝑊 → ( ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 9 |
|
funfn |
⊢ ( Fun ( iEdg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐻 ) Fn dom ( iEdg ‘ 𝐻 ) ) |
| 10 |
9
|
biimpi |
⊢ ( Fun ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) Fn dom ( iEdg ‘ 𝐻 ) ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ Fun ( iEdg ‘ 𝐻 ) ) → ( iEdg ‘ 𝐻 ) Fn dom ( iEdg ‘ 𝐻 ) ) |
| 12 |
|
simp2 |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ Fun ( iEdg ‘ 𝐻 ) ) → ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 13 |
|
df-f |
⊢ ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( ( iEdg ‘ 𝐻 ) Fn dom ( iEdg ‘ 𝐻 ) ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 14 |
11 12 13
|
sylanbrc |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ Fun ( iEdg ‘ 𝐻 ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 15 |
14
|
3exp |
⊢ ( 𝐻 ∈ 𝑊 → ( ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( Fun ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 16 |
8 15
|
sylbid |
⊢ ( 𝐻 ∈ 𝑊 → ( ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( Fun ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 17 |
5 16
|
biimtrid |
⊢ ( 𝐻 ∈ 𝑊 → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → ( Fun ( iEdg ‘ 𝐻 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 18 |
17
|
3imp |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ Fun ( iEdg ‘ 𝐻 ) ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 19 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 20 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
| 21 |
19 20
|
isumgrs |
⊢ ( 𝐻 ∈ 𝑊 → ( 𝐻 ∈ UMGraph ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ Fun ( iEdg ‘ 𝐻 ) ) → ( 𝐻 ∈ UMGraph ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 23 |
18 22
|
mpbird |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ Fun ( iEdg ‘ 𝐻 ) ) → 𝐻 ∈ UMGraph ) |