Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } |
2 |
1
|
isausgr |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑉 𝐺 𝐸 ↔ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
3 |
|
f1oi |
⊢ ( I ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 |
4 |
|
dff1o5 |
⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 ↔ ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 ∧ ran ( I ↾ 𝐸 ) = 𝐸 ) ) |
5 |
|
f1ss |
⊢ ( ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 ∧ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( I ↾ 𝐸 ) : 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
6 |
|
dmresi |
⊢ dom ( I ↾ 𝐸 ) = 𝐸 |
7 |
6
|
eqcomi |
⊢ 𝐸 = dom ( I ↾ 𝐸 ) |
8 |
|
f1eq2 |
⊢ ( 𝐸 = dom ( I ↾ 𝐸 ) → ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
10 |
5 9
|
sylib |
⊢ ( ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 ∧ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
11 |
10
|
ex |
⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
12 |
11
|
a1d |
⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 ∧ ran ( I ↾ 𝐸 ) = 𝐸 ) → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
14 |
4 13
|
sylbi |
⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
15 |
3 14
|
ax-mp |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
16 |
|
df-f |
⊢ ( ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( ( I ↾ 𝐸 ) Fn dom ( I ↾ 𝐸 ) ∧ ran ( I ↾ 𝐸 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
17 |
|
rnresi |
⊢ ran ( I ↾ 𝐸 ) = 𝐸 |
18 |
17
|
sseq1i |
⊢ ( ran ( I ↾ 𝐸 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
19 |
18
|
biimpi |
⊢ ( ran ( I ↾ 𝐸 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
20 |
19
|
a1d |
⊢ ( ran ( I ↾ 𝐸 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
21 |
16 20
|
simplbiim |
⊢ ( ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
22 |
|
f1f |
⊢ ( ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
23 |
21 22
|
syl11 |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
24 |
15 23
|
impbid |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
25 |
|
resiexg |
⊢ ( 𝐸 ∈ 𝑌 → ( I ↾ 𝐸 ) ∈ V ) |
26 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ ( I ↾ 𝐸 ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
27 |
25 26
|
sylan2 |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
28 |
27
|
dmeqd |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = dom ( I ↾ 𝐸 ) ) |
29 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ ( I ↾ 𝐸 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) |
30 |
25 29
|
sylan2 |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) |
31 |
30
|
pweqd |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝒫 𝑉 ) |
32 |
31
|
rabeqdv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
33 |
27 28 32
|
f1eq123d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
34 |
24 33
|
bitr4d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
35 |
|
opex |
⊢ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ V |
36 |
|
eqid |
⊢ ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) |
37 |
|
eqid |
⊢ ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) |
38 |
36 37
|
isusgrs |
⊢ ( 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ V → ( 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ↔ ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
39 |
35 38
|
ax-mp |
⊢ ( 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ↔ ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
40 |
39
|
bicomi |
⊢ ( ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ) |
41 |
40
|
a1i |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ) ) |
42 |
2 34 41
|
3bitrd |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑉 𝐺 𝐸 ↔ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ) ) |