Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } |
2 |
|
ausgrusgri.1 |
⊢ 𝑂 = { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } |
3 |
|
fvex |
⊢ ( Vtx ‘ 𝐻 ) ∈ V |
4 |
|
fvex |
⊢ ( Edg ‘ 𝐻 ) ∈ V |
5 |
1
|
isausgr |
⊢ ( ( ( Vtx ‘ 𝐻 ) ∈ V ∧ ( Edg ‘ 𝐻 ) ∈ V ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
7 |
|
edgval |
⊢ ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) |
8 |
7
|
a1i |
⊢ ( 𝐻 ∈ 𝑊 → ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) ) |
9 |
8
|
sseq1d |
⊢ ( 𝐻 ∈ 𝑊 → ( ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
10 |
2
|
eleq2i |
⊢ ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 ↔ ( iEdg ‘ 𝐻 ) ∈ { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } ) |
11 |
|
fvex |
⊢ ( iEdg ‘ 𝐻 ) ∈ V |
12 |
|
id |
⊢ ( 𝑓 = ( iEdg ‘ 𝐻 ) → 𝑓 = ( iEdg ‘ 𝐻 ) ) |
13 |
|
dmeq |
⊢ ( 𝑓 = ( iEdg ‘ 𝐻 ) → dom 𝑓 = dom ( iEdg ‘ 𝐻 ) ) |
14 |
|
rneq |
⊢ ( 𝑓 = ( iEdg ‘ 𝐻 ) → ran 𝑓 = ran ( iEdg ‘ 𝐻 ) ) |
15 |
12 13 14
|
f1eq123d |
⊢ ( 𝑓 = ( iEdg ‘ 𝐻 ) → ( 𝑓 : dom 𝑓 –1-1→ ran 𝑓 ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ) ) |
16 |
11 15
|
elab |
⊢ ( ( iEdg ‘ 𝐻 ) ∈ { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ) |
17 |
10 16
|
sylbb |
⊢ ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ) |
19 |
|
simp2 |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
20 |
|
f1ssr |
⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
22 |
21
|
3exp |
⊢ ( 𝐻 ∈ 𝑊 → ( ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
23 |
9 22
|
sylbid |
⊢ ( 𝐻 ∈ 𝑊 → ( ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
24 |
6 23
|
syl5bi |
⊢ ( 𝐻 ∈ 𝑊 → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
25 |
24
|
3imp |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
26 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
27 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
28 |
26 27
|
isusgrs |
⊢ ( 𝐻 ∈ 𝑊 → ( 𝐻 ∈ USGraph ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( 𝐻 ∈ USGraph ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
30 |
25 29
|
mpbird |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → 𝐻 ∈ USGraph ) |