| Step | Hyp | Ref | Expression | 
						
							| 1 |  | letric | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  ∨  𝐵  ≤  𝐴 ) ) | 
						
							| 2 | 1 | orcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  ∨  𝐴  ≤  𝐵 ) ) | 
						
							| 3 |  | avgle2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  ↔  ( ( 𝐵  +  𝐴 )  /  2 )  ≤  𝐴 ) ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  ↔  ( ( 𝐵  +  𝐴 )  /  2 )  ≤  𝐴 ) ) | 
						
							| 5 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 6 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | addcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  +  𝐵 )  /  2 )  =  ( ( 𝐵  +  𝐴 )  /  2 ) ) | 
						
							| 10 | 9 | breq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  ≤  𝐴  ↔  ( ( 𝐵  +  𝐴 )  /  2 )  ≤  𝐴 ) ) | 
						
							| 11 | 4 10 | bitr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  ≤  𝐴 ) ) | 
						
							| 12 |  | avgle2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  ≤  𝐵 ) ) | 
						
							| 13 | 11 12 | orbi12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐵  ≤  𝐴  ∨  𝐴  ≤  𝐵 )  ↔  ( ( ( 𝐴  +  𝐵 )  /  2 )  ≤  𝐴  ∨  ( ( 𝐴  +  𝐵 )  /  2 )  ≤  𝐵 ) ) ) | 
						
							| 14 | 2 13 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  ≤  𝐴  ∨  ( ( 𝐴  +  𝐵 )  /  2 )  ≤  𝐵 ) ) |