| Step | Hyp | Ref | Expression | 
						
							| 1 |  | avglt2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐵  <  𝐴  ↔  ( ( 𝐵  +  𝐴 )  /  2 )  <  𝐴 ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  <  𝐴  ↔  ( ( 𝐵  +  𝐴 )  /  2 )  <  𝐴 ) ) | 
						
							| 3 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | addcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  +  𝐵 )  /  2 )  =  ( ( 𝐵  +  𝐴 )  /  2 ) ) | 
						
							| 8 | 7 | breq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐴  ↔  ( ( 𝐵  +  𝐴 )  /  2 )  <  𝐴 ) ) | 
						
							| 9 | 2 8 | bitr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  <  𝐴  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐴 ) ) | 
						
							| 10 | 9 | notbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ¬  𝐵  <  𝐴  ↔  ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐴 ) ) | 
						
							| 11 |  | lenlt | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  ↔  ¬  𝐵  <  𝐴 ) ) | 
						
							| 12 |  | readdcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 13 |  | rehalfcl | ⊢ ( ( 𝐴  +  𝐵 )  ∈  ℝ  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ ) | 
						
							| 15 |  | lenlt | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( ( 𝐴  +  𝐵 )  /  2 )  ∈  ℝ )  →  ( 𝐴  ≤  ( ( 𝐴  +  𝐵 )  /  2 )  ↔  ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐴 ) ) | 
						
							| 16 | 14 15 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  ( ( 𝐴  +  𝐵 )  /  2 )  ↔  ¬  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐴 ) ) | 
						
							| 17 | 10 11 16 | 3bitr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  ↔  𝐴  ≤  ( ( 𝐴  +  𝐵 )  /  2 ) ) ) |