| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltadd2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  +  𝐴 )  <  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 2 | 1 | 3anidm13 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  +  𝐴 )  <  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 4 | 3 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | times2 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  2 )  =  ( 𝐴  +  𝐴 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  2 )  =  ( 𝐴  +  𝐴 ) ) | 
						
							| 7 | 6 | breq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  ·  2 )  <  ( 𝐴  +  𝐵 )  ↔  ( 𝐴  +  𝐴 )  <  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 8 |  | readdcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 9 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 10 |  | 2pos | ⊢ 0  <  2 | 
						
							| 11 | 9 10 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 13 |  | ltmuldiv | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐴  +  𝐵 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝐴  ·  2 )  <  ( 𝐴  +  𝐵 )  ↔  𝐴  <  ( ( 𝐴  +  𝐵 )  /  2 ) ) ) | 
						
							| 14 | 3 8 12 13 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  ·  2 )  <  ( 𝐴  +  𝐵 )  ↔  𝐴  <  ( ( 𝐴  +  𝐵 )  /  2 ) ) ) | 
						
							| 15 | 2 7 14 | 3bitr2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  𝐴  <  ( ( 𝐴  +  𝐵 )  /  2 ) ) ) |