Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
3 |
|
2times |
⊢ ( 𝐵 ∈ ℂ → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
5 |
4
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) < ( 2 · 𝐵 ) ↔ ( 𝐴 + 𝐵 ) < ( 𝐵 + 𝐵 ) ) ) |
6 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
7 |
|
2re |
⊢ 2 ∈ ℝ |
8 |
|
2pos |
⊢ 0 < 2 |
9 |
7 8
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
10 |
9
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
11 |
|
ltdivmul |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( 𝐴 + 𝐵 ) < ( 2 · 𝐵 ) ) ) |
12 |
6 1 10 11
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( 𝐴 + 𝐵 ) < ( 2 · 𝐵 ) ) ) |
13 |
|
ltadd1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 𝐵 ) < ( 𝐵 + 𝐵 ) ) ) |
14 |
13
|
3anidm23 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 𝐵 ) < ( 𝐵 + 𝐵 ) ) ) |
15 |
5 12 14
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |