| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 2 | 1 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | 2times | ⊢ ( 𝐵  ∈  ℂ  →  ( 2  ·  𝐵 )  =  ( 𝐵  +  𝐵 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 2  ·  𝐵 )  =  ( 𝐵  +  𝐵 ) ) | 
						
							| 5 | 4 | breq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  +  𝐵 )  <  ( 2  ·  𝐵 )  ↔  ( 𝐴  +  𝐵 )  <  ( 𝐵  +  𝐵 ) ) ) | 
						
							| 6 |  | readdcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  𝐵 )  ∈  ℝ ) | 
						
							| 7 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 8 |  | 2pos | ⊢ 0  <  2 | 
						
							| 9 | 7 8 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 11 |  | ltdivmul | ⊢ ( ( ( 𝐴  +  𝐵 )  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵  ↔  ( 𝐴  +  𝐵 )  <  ( 2  ·  𝐵 ) ) ) | 
						
							| 12 | 6 1 10 11 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵  ↔  ( 𝐴  +  𝐵 )  <  ( 2  ·  𝐵 ) ) ) | 
						
							| 13 |  | ltadd1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  +  𝐵 )  <  ( 𝐵  +  𝐵 ) ) ) | 
						
							| 14 | 13 | 3anidm23 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  +  𝐵 )  <  ( 𝐵  +  𝐵 ) ) ) | 
						
							| 15 | 5 12 14 | 3bitr4rd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( ( 𝐴  +  𝐵 )  /  2 )  <  𝐵 ) ) |