Metamath Proof Explorer


Axiom ax-ac2

Description: In order to avoid uses of ax-reg for derivation of AC equivalents, we provide ax-ac2 , which is equivalent to the standard AC of textbooks. This appears to be the shortest known equivalent to the standard AC when expressed in terms of set theory primitives. It was found by Kurt Maes as Theorem ackm . We removed the leading quantifier to make it slightly shorter, since we have ax-gen available. The derivation of ax-ac2 from ax-ac is shown by Theorem axac2 , and the reverse derivation by axac . Note that we use ax-reg to derive ax-ac from ax-ac2 , but not to derive ax-ac2 from ax-ac . (Contributed by NM, 19-Dec-2016)

Ref Expression
Assertion ax-ac2 𝑦𝑧𝑣𝑢 ( ( 𝑦𝑥 ∧ ( 𝑧𝑦 → ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 ) ) ) ∨ ( ¬ 𝑦𝑥 ∧ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy 𝑦
1 vz 𝑧
2 vv 𝑣
3 vu 𝑢
4 0 cv 𝑦
5 vx 𝑥
6 5 cv 𝑥
7 4 6 wcel 𝑦𝑥
8 1 cv 𝑧
9 8 4 wcel 𝑧𝑦
10 2 cv 𝑣
11 10 6 wcel 𝑣𝑥
12 4 10 wceq 𝑦 = 𝑣
13 12 wn ¬ 𝑦 = 𝑣
14 11 13 wa ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 )
15 8 10 wcel 𝑧𝑣
16 14 15 wa ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 )
17 9 16 wi ( 𝑧𝑦 → ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 ) )
18 7 17 wa ( 𝑦𝑥 ∧ ( 𝑧𝑦 → ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 ) ) )
19 7 wn ¬ 𝑦𝑥
20 8 6 wcel 𝑧𝑥
21 10 8 wcel 𝑣𝑧
22 10 4 wcel 𝑣𝑦
23 21 22 wa ( 𝑣𝑧𝑣𝑦 )
24 3 cv 𝑢
25 24 8 wcel 𝑢𝑧
26 24 4 wcel 𝑢𝑦
27 25 26 wa ( 𝑢𝑧𝑢𝑦 )
28 24 10 wceq 𝑢 = 𝑣
29 27 28 wi ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 )
30 23 29 wa ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) )
31 20 30 wi ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) )
32 19 31 wa ( ¬ 𝑦𝑥 ∧ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
33 18 32 wo ( ( 𝑦𝑥 ∧ ( 𝑧𝑦 → ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 ) ) ) ∨ ( ¬ 𝑦𝑥 ∧ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) ) )
34 33 3 wal 𝑢 ( ( 𝑦𝑥 ∧ ( 𝑧𝑦 → ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 ) ) ) ∨ ( ¬ 𝑦𝑥 ∧ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) ) )
35 34 2 wex 𝑣𝑢 ( ( 𝑦𝑥 ∧ ( 𝑧𝑦 → ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 ) ) ) ∨ ( ¬ 𝑦𝑥 ∧ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) ) )
36 35 1 wal 𝑧𝑣𝑢 ( ( 𝑦𝑥 ∧ ( 𝑧𝑦 → ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 ) ) ) ∨ ( ¬ 𝑦𝑥 ∧ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) ) )
37 36 0 wex 𝑦𝑧𝑣𝑢 ( ( 𝑦𝑥 ∧ ( 𝑧𝑦 → ( ( 𝑣𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧𝑣 ) ) ) ∨ ( ¬ 𝑦𝑥 ∧ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) ) )