| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vy |
⊢ 𝑦 |
| 1 |
|
vz |
⊢ 𝑧 |
| 2 |
|
vv |
⊢ 𝑣 |
| 3 |
|
vu |
⊢ 𝑢 |
| 4 |
0
|
cv |
⊢ 𝑦 |
| 5 |
|
vx |
⊢ 𝑥 |
| 6 |
5
|
cv |
⊢ 𝑥 |
| 7 |
4 6
|
wcel |
⊢ 𝑦 ∈ 𝑥 |
| 8 |
1
|
cv |
⊢ 𝑧 |
| 9 |
8 4
|
wcel |
⊢ 𝑧 ∈ 𝑦 |
| 10 |
2
|
cv |
⊢ 𝑣 |
| 11 |
10 6
|
wcel |
⊢ 𝑣 ∈ 𝑥 |
| 12 |
4 10
|
wceq |
⊢ 𝑦 = 𝑣 |
| 13 |
12
|
wn |
⊢ ¬ 𝑦 = 𝑣 |
| 14 |
11 13
|
wa |
⊢ ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) |
| 15 |
8 10
|
wcel |
⊢ 𝑧 ∈ 𝑣 |
| 16 |
14 15
|
wa |
⊢ ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) |
| 17 |
9 16
|
wi |
⊢ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) |
| 18 |
7 17
|
wa |
⊢ ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) |
| 19 |
7
|
wn |
⊢ ¬ 𝑦 ∈ 𝑥 |
| 20 |
8 6
|
wcel |
⊢ 𝑧 ∈ 𝑥 |
| 21 |
10 8
|
wcel |
⊢ 𝑣 ∈ 𝑧 |
| 22 |
10 4
|
wcel |
⊢ 𝑣 ∈ 𝑦 |
| 23 |
21 22
|
wa |
⊢ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) |
| 24 |
3
|
cv |
⊢ 𝑢 |
| 25 |
24 8
|
wcel |
⊢ 𝑢 ∈ 𝑧 |
| 26 |
24 4
|
wcel |
⊢ 𝑢 ∈ 𝑦 |
| 27 |
25 26
|
wa |
⊢ ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) |
| 28 |
24 10
|
wceq |
⊢ 𝑢 = 𝑣 |
| 29 |
27 28
|
wi |
⊢ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) |
| 30 |
23 29
|
wa |
⊢ ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) |
| 31 |
20 30
|
wi |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) |
| 32 |
19 31
|
wa |
⊢ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) |
| 33 |
18 32
|
wo |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) |
| 34 |
33 3
|
wal |
⊢ ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) |
| 35 |
34 2
|
wex |
⊢ ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) |
| 36 |
35 1
|
wal |
⊢ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) |
| 37 |
36 0
|
wex |
⊢ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) |