Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Real and complex number postulates restated as axioms
ax-addass
Metamath Proof Explorer
Description: Addition of complex numbers is associative. Axiom 9 of 22 for real and
complex numbers, justified by Theorem axaddass . Proofs should normally
use addass instead. (New usage is discouraged.) (Contributed by NM , 22-Nov-1994)
Ref
Expression
Assertion
ax-addass
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
⊢ 𝐴
1
cc
⊢ ℂ
2
0 1
wcel
⊢ 𝐴 ∈ ℂ
3
cB
⊢ 𝐵
4
3 1
wcel
⊢ 𝐵 ∈ ℂ
5
cC
⊢ 𝐶
6
5 1
wcel
⊢ 𝐶 ∈ ℂ
7
2 4 6
w3a
⊢ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ )
8
caddc
⊢ +
9
0 3 8
co
⊢ ( 𝐴 + 𝐵 )
10
9 5 8
co
⊢ ( ( 𝐴 + 𝐵 ) + 𝐶 )
11
3 5 8
co
⊢ ( 𝐵 + 𝐶 )
12
0 11 8
co
⊢ ( 𝐴 + ( 𝐵 + 𝐶 ) )
13
10 12
wceq
⊢ ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )
14
7 13
wi
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )