Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Real and complex number postulates restated as axioms
ax-distr
Metamath Proof Explorer
Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of
22 for real and complex numbers, justified by Theorem axdistr . Proofs
should normally use adddi instead. (New usage is discouraged.)
(Contributed by NM , 22-Nov-1994)
Ref
Expression
Assertion
ax-distr
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
⊢ 𝐴
1
cc
⊢ ℂ
2
0 1
wcel
⊢ 𝐴 ∈ ℂ
3
cB
⊢ 𝐵
4
3 1
wcel
⊢ 𝐵 ∈ ℂ
5
cC
⊢ 𝐶
6
5 1
wcel
⊢ 𝐶 ∈ ℂ
7
2 4 6
w3a
⊢ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ )
8
cmul
⊢ ·
9
caddc
⊢ +
10
3 5 9
co
⊢ ( 𝐵 + 𝐶 )
11
0 10 8
co
⊢ ( 𝐴 · ( 𝐵 + 𝐶 ) )
12
0 3 8
co
⊢ ( 𝐴 · 𝐵 )
13
0 5 8
co
⊢ ( 𝐴 · 𝐶 )
14
12 13 9
co
⊢ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) )
15
11 14
wceq
⊢ ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) )
16
7 15
wi
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) )