| Step | Hyp | Ref | Expression | 
						
							| 0 |  | vy | ⊢ 𝑦 | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 | 1 | cv | ⊢ 𝑥 | 
						
							| 3 | 0 | cv | ⊢ 𝑦 | 
						
							| 4 | 2 3 | wcel | ⊢ 𝑥  ∈  𝑦 | 
						
							| 5 |  | vz | ⊢ 𝑧 | 
						
							| 6 |  | vw | ⊢ 𝑤 | 
						
							| 7 | 6 | cv | ⊢ 𝑤 | 
						
							| 8 | 5 | cv | ⊢ 𝑧 | 
						
							| 9 | 7 8 | wss | ⊢ 𝑤  ⊆  𝑧 | 
						
							| 10 | 7 3 | wcel | ⊢ 𝑤  ∈  𝑦 | 
						
							| 11 | 9 10 | wi | ⊢ ( 𝑤  ⊆  𝑧  →  𝑤  ∈  𝑦 ) | 
						
							| 12 | 11 6 | wal | ⊢ ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  𝑦 ) | 
						
							| 13 |  | vv | ⊢ 𝑣 | 
						
							| 14 | 13 | cv | ⊢ 𝑣 | 
						
							| 15 | 14 8 | wss | ⊢ 𝑣  ⊆  𝑧 | 
						
							| 16 | 14 7 | wcel | ⊢ 𝑣  ∈  𝑤 | 
						
							| 17 | 15 16 | wi | ⊢ ( 𝑣  ⊆  𝑧  →  𝑣  ∈  𝑤 ) | 
						
							| 18 | 17 13 | wal | ⊢ ∀ 𝑣 ( 𝑣  ⊆  𝑧  →  𝑣  ∈  𝑤 ) | 
						
							| 19 | 18 6 3 | wrex | ⊢ ∃ 𝑤  ∈  𝑦 ∀ 𝑣 ( 𝑣  ⊆  𝑧  →  𝑣  ∈  𝑤 ) | 
						
							| 20 | 12 19 | wa | ⊢ ( ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  𝑦 )  ∧  ∃ 𝑤  ∈  𝑦 ∀ 𝑣 ( 𝑣  ⊆  𝑧  →  𝑣  ∈  𝑤 ) ) | 
						
							| 21 | 20 5 3 | wral | ⊢ ∀ 𝑧  ∈  𝑦 ( ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  𝑦 )  ∧  ∃ 𝑤  ∈  𝑦 ∀ 𝑣 ( 𝑣  ⊆  𝑧  →  𝑣  ∈  𝑤 ) ) | 
						
							| 22 | 8 3 | wss | ⊢ 𝑧  ⊆  𝑦 | 
						
							| 23 |  | cen | ⊢  ≈ | 
						
							| 24 | 8 3 23 | wbr | ⊢ 𝑧  ≈  𝑦 | 
						
							| 25 | 8 3 | wcel | ⊢ 𝑧  ∈  𝑦 | 
						
							| 26 | 24 25 | wo | ⊢ ( 𝑧  ≈  𝑦  ∨  𝑧  ∈  𝑦 ) | 
						
							| 27 | 22 26 | wi | ⊢ ( 𝑧  ⊆  𝑦  →  ( 𝑧  ≈  𝑦  ∨  𝑧  ∈  𝑦 ) ) | 
						
							| 28 | 27 5 | wal | ⊢ ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( 𝑧  ≈  𝑦  ∨  𝑧  ∈  𝑦 ) ) | 
						
							| 29 | 4 21 28 | w3a | ⊢ ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  𝑦 )  ∧  ∃ 𝑤  ∈  𝑦 ∀ 𝑣 ( 𝑣  ⊆  𝑧  →  𝑣  ∈  𝑤 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( 𝑧  ≈  𝑦  ∨  𝑧  ∈  𝑦 ) ) ) | 
						
							| 30 | 29 0 | wex | ⊢ ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( ∀ 𝑤 ( 𝑤  ⊆  𝑧  →  𝑤  ∈  𝑦 )  ∧  ∃ 𝑤  ∈  𝑦 ∀ 𝑣 ( 𝑣  ⊆  𝑧  →  𝑣  ∈  𝑤 ) )  ∧  ∀ 𝑧 ( 𝑧  ⊆  𝑦  →  ( 𝑧  ≈  𝑦  ∨  𝑧  ∈  𝑦 ) ) ) |