Step |
Hyp |
Ref |
Expression |
0 |
|
vy |
⊢ 𝑦 |
1 |
|
vx |
⊢ 𝑥 |
2 |
1
|
cv |
⊢ 𝑥 |
3 |
0
|
cv |
⊢ 𝑦 |
4 |
2 3
|
wcel |
⊢ 𝑥 ∈ 𝑦 |
5 |
|
vz |
⊢ 𝑧 |
6 |
|
vw |
⊢ 𝑤 |
7 |
6
|
cv |
⊢ 𝑤 |
8 |
5
|
cv |
⊢ 𝑧 |
9 |
7 8
|
wss |
⊢ 𝑤 ⊆ 𝑧 |
10 |
7 3
|
wcel |
⊢ 𝑤 ∈ 𝑦 |
11 |
9 10
|
wi |
⊢ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) |
12 |
11 6
|
wal |
⊢ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) |
13 |
|
vv |
⊢ 𝑣 |
14 |
13
|
cv |
⊢ 𝑣 |
15 |
14 8
|
wss |
⊢ 𝑣 ⊆ 𝑧 |
16 |
14 7
|
wcel |
⊢ 𝑣 ∈ 𝑤 |
17 |
15 16
|
wi |
⊢ ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
18 |
17 13
|
wal |
⊢ ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
19 |
18 6 3
|
wrex |
⊢ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
20 |
12 19
|
wa |
⊢ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) |
21 |
20 5 3
|
wral |
⊢ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) |
22 |
8 3
|
wss |
⊢ 𝑧 ⊆ 𝑦 |
23 |
|
cen |
⊢ ≈ |
24 |
8 3 23
|
wbr |
⊢ 𝑧 ≈ 𝑦 |
25 |
8 3
|
wcel |
⊢ 𝑧 ∈ 𝑦 |
26 |
24 25
|
wo |
⊢ ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) |
27 |
22 26
|
wi |
⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
28 |
27 5
|
wal |
⊢ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
29 |
4 21 28
|
w3a |
⊢ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
30 |
29 0
|
wex |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |