Metamath Proof Explorer


Axiom ax-hcompl

Description: Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ax-hcompl ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹𝑣 𝑥 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF 𝐹
1 ccauold Cauchy
2 0 1 wcel 𝐹 ∈ Cauchy
3 vx 𝑥
4 chba
5 chli 𝑣
6 3 cv 𝑥
7 0 6 5 wbr 𝐹𝑣 𝑥
8 7 3 4 wrex 𝑥 ∈ ℋ 𝐹𝑣 𝑥
9 2 8 wi ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹𝑣 𝑥 )