Metamath Proof Explorer


Axiom ax-hfi

Description: Inner product maps pairs from ~H to CC . (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion ax-hfi ·ih : ( ℋ × ℋ ) ⟶ ℂ

Detailed syntax breakdown

Step Hyp Ref Expression
0 csp ·ih
1 chba
2 1 1 cxp ( ℋ × ℋ )
3 cc
4 2 3 0 wf ·ih : ( ℋ × ℋ ) ⟶ ℂ