| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vn |
⊢ 𝑛 |
| 1 |
|
vz |
⊢ 𝑧 |
| 2 |
|
cz |
⊢ ℤ |
| 3 |
|
c2 |
⊢ 2 |
| 4 |
|
cdvds |
⊢ ∥ |
| 5 |
1
|
cv |
⊢ 𝑧 |
| 6 |
3 5 4
|
wbr |
⊢ 2 ∥ 𝑧 |
| 7 |
6
|
wn |
⊢ ¬ 2 ∥ 𝑧 |
| 8 |
7 1 2
|
crab |
⊢ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } |
| 9 |
|
c1 |
⊢ 1 |
| 10 |
|
cc0 |
⊢ 0 |
| 11 |
9 10
|
cdc |
⊢ ; 1 0 |
| 12 |
|
cexp |
⊢ ↑ |
| 13 |
|
c7 |
⊢ 7 |
| 14 |
3 13
|
cdc |
⊢ ; 2 7 |
| 15 |
11 14 12
|
co |
⊢ ( ; 1 0 ↑ ; 2 7 ) |
| 16 |
|
cle |
⊢ ≤ |
| 17 |
0
|
cv |
⊢ 𝑛 |
| 18 |
15 17 16
|
wbr |
⊢ ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑛 |
| 19 |
|
vh |
⊢ ℎ |
| 20 |
|
cico |
⊢ [,) |
| 21 |
|
cpnf |
⊢ +∞ |
| 22 |
10 21 20
|
co |
⊢ ( 0 [,) +∞ ) |
| 23 |
|
cmap |
⊢ ↑m |
| 24 |
|
cn |
⊢ ℕ |
| 25 |
22 24 23
|
co |
⊢ ( ( 0 [,) +∞ ) ↑m ℕ ) |
| 26 |
|
vk |
⊢ 𝑘 |
| 27 |
|
vm |
⊢ 𝑚 |
| 28 |
26
|
cv |
⊢ 𝑘 |
| 29 |
27
|
cv |
⊢ 𝑚 |
| 30 |
29 28
|
cfv |
⊢ ( 𝑘 ‘ 𝑚 ) |
| 31 |
|
cdp |
⊢ . |
| 32 |
|
c9 |
⊢ 9 |
| 33 |
|
c5 |
⊢ 5 |
| 34 |
33 33
|
cdp2 |
⊢ _ 5 5 |
| 35 |
32 34
|
cdp2 |
⊢ _ 9 _ 5 5 |
| 36 |
32 35
|
cdp2 |
⊢ _ 9 _ 9 _ 5 5 |
| 37 |
13 36
|
cdp2 |
⊢ _ 7 _ 9 _ 9 _ 5 5 |
| 38 |
10 37
|
cdp2 |
⊢ _ 0 _ 7 _ 9 _ 9 _ 5 5 |
| 39 |
9 38 31
|
co |
⊢ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) |
| 40 |
30 39 16
|
wbr |
⊢ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) |
| 41 |
40 27 24
|
wral |
⊢ ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) |
| 42 |
19
|
cv |
⊢ ℎ |
| 43 |
29 42
|
cfv |
⊢ ( ℎ ‘ 𝑚 ) |
| 44 |
|
c4 |
⊢ 4 |
| 45 |
9 44
|
cdp2 |
⊢ _ 1 4 |
| 46 |
44 45
|
cdp2 |
⊢ _ 4 _ 1 4 |
| 47 |
9 46 31
|
co |
⊢ ( 1 . _ 4 _ 1 4 ) |
| 48 |
43 47 16
|
wbr |
⊢ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) |
| 49 |
48 27 24
|
wral |
⊢ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) |
| 50 |
|
c8 |
⊢ 8 |
| 51 |
44 50
|
cdp2 |
⊢ _ 4 8 |
| 52 |
3 51
|
cdp2 |
⊢ _ 2 _ 4 8 |
| 53 |
3 52
|
cdp2 |
⊢ _ 2 _ 2 _ 4 8 |
| 54 |
44 53
|
cdp2 |
⊢ _ 4 _ 2 _ 2 _ 4 8 |
| 55 |
10 54
|
cdp2 |
⊢ _ 0 _ 4 _ 2 _ 2 _ 4 8 |
| 56 |
10 55
|
cdp2 |
⊢ _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 |
| 57 |
10 56
|
cdp2 |
⊢ _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 |
| 58 |
10 57 31
|
co |
⊢ ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) |
| 59 |
|
cmul |
⊢ · |
| 60 |
17 3 12
|
co |
⊢ ( 𝑛 ↑ 2 ) |
| 61 |
58 60 59
|
co |
⊢ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) |
| 62 |
|
cioo |
⊢ (,) |
| 63 |
10 9 62
|
co |
⊢ ( 0 (,) 1 ) |
| 64 |
|
cvma |
⊢ Λ |
| 65 |
59
|
cof |
⊢ ∘f · |
| 66 |
64 42 65
|
co |
⊢ ( Λ ∘f · ℎ ) |
| 67 |
|
cvts |
⊢ vts |
| 68 |
66 17 67
|
co |
⊢ ( ( Λ ∘f · ℎ ) vts 𝑛 ) |
| 69 |
|
vx |
⊢ 𝑥 |
| 70 |
69
|
cv |
⊢ 𝑥 |
| 71 |
70 68
|
cfv |
⊢ ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) |
| 72 |
64 28 65
|
co |
⊢ ( Λ ∘f · 𝑘 ) |
| 73 |
72 17 67
|
co |
⊢ ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) |
| 74 |
70 73
|
cfv |
⊢ ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) |
| 75 |
74 3 12
|
co |
⊢ ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) |
| 76 |
71 75 59
|
co |
⊢ ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) |
| 77 |
|
ce |
⊢ exp |
| 78 |
|
ci |
⊢ i |
| 79 |
|
cpi |
⊢ π |
| 80 |
3 79 59
|
co |
⊢ ( 2 · π ) |
| 81 |
78 80 59
|
co |
⊢ ( i · ( 2 · π ) ) |
| 82 |
17
|
cneg |
⊢ - 𝑛 |
| 83 |
82 70 59
|
co |
⊢ ( - 𝑛 · 𝑥 ) |
| 84 |
81 83 59
|
co |
⊢ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) |
| 85 |
84 77
|
cfv |
⊢ ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) |
| 86 |
76 85 59
|
co |
⊢ ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) |
| 87 |
69 63 86
|
citg |
⊢ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 |
| 88 |
61 87 16
|
wbr |
⊢ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 |
| 89 |
41 49 88
|
w3a |
⊢ ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) |
| 90 |
89 26 25
|
wrex |
⊢ ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) |
| 91 |
90 19 25
|
wrex |
⊢ ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) |
| 92 |
18 91
|
wi |
⊢ ( ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑛 → ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) ) |
| 93 |
92 0 8
|
wral |
⊢ ∀ 𝑛 ∈ { 𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧 } ( ( ; 1 0 ↑ ; 2 7 ) ≤ 𝑛 → ∃ ℎ ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ∃ 𝑘 ∈ ( ( 0 [,) +∞ ) ↑m ℕ ) ( ∀ 𝑚 ∈ ℕ ( 𝑘 ‘ 𝑚 ) ≤ ( 1 . _ 0 _ 7 _ 9 _ 9 _ 5 5 ) ∧ ∀ 𝑚 ∈ ℕ ( ℎ ‘ 𝑚 ) ≤ ( 1 . _ 4 _ 1 4 ) ∧ ( ( 0 . _ 0 _ 0 _ 0 _ 4 _ 2 _ 2 _ 4 8 ) · ( 𝑛 ↑ 2 ) ) ≤ ∫ ( 0 (,) 1 ) ( ( ( ( ( Λ ∘f · ℎ ) vts 𝑛 ) ‘ 𝑥 ) · ( ( ( ( Λ ∘f · 𝑘 ) vts 𝑛 ) ‘ 𝑥 ) ↑ 2 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑛 · 𝑥 ) ) ) ) d 𝑥 ) ) |