Metamath Proof Explorer


Axiom ax-his2

Description: Distributive law for inner product. Postulate (S2) of Beran p. 95. (Contributed by NM, 31-Jul-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-his2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 chba
2 0 1 wcel 𝐴 ∈ ℋ
3 cB 𝐵
4 3 1 wcel 𝐵 ∈ ℋ
5 cC 𝐶
6 5 1 wcel 𝐶 ∈ ℋ
7 2 4 6 w3a ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ )
8 cva +
9 0 3 8 co ( 𝐴 + 𝐵 )
10 csp ·ih
11 9 5 10 co ( ( 𝐴 + 𝐵 ) ·ih 𝐶 )
12 0 5 10 co ( 𝐴 ·ih 𝐶 )
13 caddc +
14 3 5 10 co ( 𝐵 ·ih 𝐶 )
15 12 14 13 co ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) )
16 11 15 wceq ( ( 𝐴 + 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) )
17 7 16 wi ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) )