Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
⊢ 𝐴 |
1 |
|
chba |
⊢ ℋ |
2 |
0 1
|
wcel |
⊢ 𝐴 ∈ ℋ |
3 |
|
cB |
⊢ 𝐵 |
4 |
3 1
|
wcel |
⊢ 𝐵 ∈ ℋ |
5 |
|
cC |
⊢ 𝐶 |
6 |
5 1
|
wcel |
⊢ 𝐶 ∈ ℋ |
7 |
2 4 6
|
w3a |
⊢ ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) |
8 |
|
cva |
⊢ +ℎ |
9 |
0 3 8
|
co |
⊢ ( 𝐴 +ℎ 𝐵 ) |
10 |
|
csp |
⊢ ·ih |
11 |
9 5 10
|
co |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih 𝐶 ) |
12 |
0 5 10
|
co |
⊢ ( 𝐴 ·ih 𝐶 ) |
13 |
|
caddc |
⊢ + |
14 |
3 5 10
|
co |
⊢ ( 𝐵 ·ih 𝐶 ) |
15 |
12 14 13
|
co |
⊢ ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) |
16 |
11 15
|
wceq |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) |
17 |
7 16
|
wi |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) ) |