Metamath Proof Explorer


Axiom ax-his4

Description: Identity law for inner product. Postulate (S4) of Beran p. 95. (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-his4 ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ·ih 𝐴 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 chba
2 0 1 wcel 𝐴 ∈ ℋ
3 c0v 0
4 0 3 wne 𝐴 ≠ 0
5 2 4 wa ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 )
6 cc0 0
7 clt <
8 csp ·ih
9 0 0 8 co ( 𝐴 ·ih 𝐴 )
10 6 9 7 wbr 0 < ( 𝐴 ·ih 𝐴 )
11 5 10 wi ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ·ih 𝐴 ) )