Metamath Proof Explorer
		
		
		
		Description:  Identity law for inner product.  Postulate (S4) of Beran p. 95.
     (Contributed by NM, 29-May-1999)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					ax-his4 | 
					⊢  ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  <  ( 𝐴  ·ih  𝐴 ) )  | 
				
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cA | 
							⊢ 𝐴  | 
						
						
							| 1 | 
							
								
							 | 
							chba | 
							⊢  ℋ  | 
						
						
							| 2 | 
							
								0 1
							 | 
							wcel | 
							⊢ 𝐴  ∈   ℋ  | 
						
						
							| 3 | 
							
								
							 | 
							c0v | 
							⊢ 0ℎ  | 
						
						
							| 4 | 
							
								0 3
							 | 
							wne | 
							⊢ 𝐴  ≠  0ℎ  | 
						
						
							| 5 | 
							
								2 4
							 | 
							wa | 
							⊢ ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  | 
						
						
							| 6 | 
							
								
							 | 
							cc0 | 
							⊢ 0  | 
						
						
							| 7 | 
							
								
							 | 
							clt | 
							⊢  <   | 
						
						
							| 8 | 
							
								
							 | 
							csp | 
							⊢  ·ih   | 
						
						
							| 9 | 
							
								0 0 8
							 | 
							co | 
							⊢ ( 𝐴  ·ih  𝐴 )  | 
						
						
							| 10 | 
							
								6 9 7
							 | 
							wbr | 
							⊢ 0  <  ( 𝐴  ·ih  𝐴 )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							wi | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  0  <  ( 𝐴  ·ih  𝐴 ) )  |