Metamath Proof Explorer
Description: Identity law for inner product. Postulate (S4) of Beran p. 95.
(Contributed by NM, 29-May-1999) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
ax-his4 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
⊢ 𝐴 |
1 |
|
chba |
⊢ ℋ |
2 |
0 1
|
wcel |
⊢ 𝐴 ∈ ℋ |
3 |
|
c0v |
⊢ 0ℎ |
4 |
0 3
|
wne |
⊢ 𝐴 ≠ 0ℎ |
5 |
2 4
|
wa |
⊢ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) |
6 |
|
cc0 |
⊢ 0 |
7 |
|
clt |
⊢ < |
8 |
|
csp |
⊢ ·ih |
9 |
0 0 8
|
co |
⊢ ( 𝐴 ·ih 𝐴 ) |
10 |
6 9 7
|
wbr |
⊢ 0 < ( 𝐴 ·ih 𝐴 ) |
11 |
5 10
|
wi |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |