Metamath Proof Explorer


Axiom ax-hvaddid

Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvaddid ( 𝐴 ∈ ℋ → ( 𝐴 + 0 ) = 𝐴 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 chba
2 0 1 wcel 𝐴 ∈ ℋ
3 cva +
4 c0v 0
5 0 4 3 co ( 𝐴 + 0 )
6 5 0 wceq ( 𝐴 + 0 ) = 𝐴
7 2 6 wi ( 𝐴 ∈ ℋ → ( 𝐴 + 0 ) = 𝐴 )