Metamath Proof Explorer


Axiom ax-hvass

Description: Vector addition is associative. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvass ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 chba
2 0 1 wcel 𝐴 ∈ ℋ
3 cB 𝐵
4 3 1 wcel 𝐵 ∈ ℋ
5 cC 𝐶
6 5 1 wcel 𝐶 ∈ ℋ
7 2 4 6 w3a ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ )
8 cva +
9 0 3 8 co ( 𝐴 + 𝐵 )
10 9 5 8 co ( ( 𝐴 + 𝐵 ) + 𝐶 )
11 3 5 8 co ( 𝐵 + 𝐶 )
12 0 11 8 co ( 𝐴 + ( 𝐵 + 𝐶 ) )
13 10 12 wceq ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )
14 7 13 wi ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) )