Metamath Proof Explorer


Axiom ax-hvcom

Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvcom ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 chba
2 0 1 wcel 𝐴 ∈ ℋ
3 cB 𝐵
4 3 1 wcel 𝐵 ∈ ℋ
5 2 4 wa ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ )
6 cva +
7 0 3 6 co ( 𝐴 + 𝐵 )
8 3 0 6 co ( 𝐵 + 𝐴 )
9 7 8 wceq ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 )
10 5 9 wi ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) )