Metamath Proof Explorer
Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
ax-hvcom |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
⊢ 𝐴 |
1 |
|
chba |
⊢ ℋ |
2 |
0 1
|
wcel |
⊢ 𝐴 ∈ ℋ |
3 |
|
cB |
⊢ 𝐵 |
4 |
3 1
|
wcel |
⊢ 𝐵 ∈ ℋ |
5 |
2 4
|
wa |
⊢ ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) |
6 |
|
cva |
⊢ +ℎ |
7 |
0 3 6
|
co |
⊢ ( 𝐴 +ℎ 𝐵 ) |
8 |
3 0 6
|
co |
⊢ ( 𝐵 +ℎ 𝐴 ) |
9 |
7 8
|
wceq |
⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |
10 |
5 9
|
wi |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) ) |