| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cA | ⊢ 𝐴 | 
						
							| 1 |  | cc | ⊢ ℂ | 
						
							| 2 | 0 1 | wcel | ⊢ 𝐴  ∈  ℂ | 
						
							| 3 |  | cB | ⊢ 𝐵 | 
						
							| 4 |  | chba | ⊢  ℋ | 
						
							| 5 | 3 4 | wcel | ⊢ 𝐵  ∈   ℋ | 
						
							| 6 |  | cC | ⊢ 𝐶 | 
						
							| 7 | 6 4 | wcel | ⊢ 𝐶  ∈   ℋ | 
						
							| 8 | 2 5 7 | w3a | ⊢ ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ ) | 
						
							| 9 |  | csm | ⊢  ·ℎ | 
						
							| 10 |  | cva | ⊢  +ℎ | 
						
							| 11 | 3 6 10 | co | ⊢ ( 𝐵  +ℎ  𝐶 ) | 
						
							| 12 | 0 11 9 | co | ⊢ ( 𝐴  ·ℎ  ( 𝐵  +ℎ  𝐶 ) ) | 
						
							| 13 | 0 3 9 | co | ⊢ ( 𝐴  ·ℎ  𝐵 ) | 
						
							| 14 | 0 6 9 | co | ⊢ ( 𝐴  ·ℎ  𝐶 ) | 
						
							| 15 | 13 14 10 | co | ⊢ ( ( 𝐴  ·ℎ  𝐵 )  +ℎ  ( 𝐴  ·ℎ  𝐶 ) ) | 
						
							| 16 | 12 15 | wceq | ⊢ ( 𝐴  ·ℎ  ( 𝐵  +ℎ  𝐶 ) )  =  ( ( 𝐴  ·ℎ  𝐵 )  +ℎ  ( 𝐴  ·ℎ  𝐶 ) ) | 
						
							| 17 | 8 16 | wi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  ( 𝐵  +ℎ  𝐶 ) )  =  ( ( 𝐴  ·ℎ  𝐵 )  +ℎ  ( 𝐴  ·ℎ  𝐶 ) ) ) |