Metamath Proof Explorer


Axiom ax-hvdistr1

Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvdistr1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cc
2 0 1 wcel 𝐴 ∈ ℂ
3 cB 𝐵
4 chba
5 3 4 wcel 𝐵 ∈ ℋ
6 cC 𝐶
7 6 4 wcel 𝐶 ∈ ℋ
8 2 5 7 w3a ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ )
9 csm ·
10 cva +
11 3 6 10 co ( 𝐵 + 𝐶 )
12 0 11 9 co ( 𝐴 · ( 𝐵 + 𝐶 ) )
13 0 3 9 co ( 𝐴 · 𝐵 )
14 0 6 9 co ( 𝐴 · 𝐶 )
15 13 14 10 co ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) )
16 12 15 wceq ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) )
17 8 16 wi ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) )