Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
⊢ 𝐴 |
1 |
|
cc |
⊢ ℂ |
2 |
0 1
|
wcel |
⊢ 𝐴 ∈ ℂ |
3 |
|
cB |
⊢ 𝐵 |
4 |
|
chba |
⊢ ℋ |
5 |
3 4
|
wcel |
⊢ 𝐵 ∈ ℋ |
6 |
|
cC |
⊢ 𝐶 |
7 |
6 4
|
wcel |
⊢ 𝐶 ∈ ℋ |
8 |
2 5 7
|
w3a |
⊢ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) |
9 |
|
csm |
⊢ ·ℎ |
10 |
|
cva |
⊢ +ℎ |
11 |
3 6 10
|
co |
⊢ ( 𝐵 +ℎ 𝐶 ) |
12 |
0 11 9
|
co |
⊢ ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) |
13 |
0 3 9
|
co |
⊢ ( 𝐴 ·ℎ 𝐵 ) |
14 |
0 6 9
|
co |
⊢ ( 𝐴 ·ℎ 𝐶 ) |
15 |
13 14 10
|
co |
⊢ ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) |
16 |
12 15
|
wceq |
⊢ ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) |
17 |
8 16
|
wi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |