Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
⊢ 𝐴 |
1 |
|
cc |
⊢ ℂ |
2 |
0 1
|
wcel |
⊢ 𝐴 ∈ ℂ |
3 |
|
cB |
⊢ 𝐵 |
4 |
3 1
|
wcel |
⊢ 𝐵 ∈ ℂ |
5 |
|
cC |
⊢ 𝐶 |
6 |
|
chba |
⊢ ℋ |
7 |
5 6
|
wcel |
⊢ 𝐶 ∈ ℋ |
8 |
2 4 7
|
w3a |
⊢ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) |
9 |
|
caddc |
⊢ + |
10 |
0 3 9
|
co |
⊢ ( 𝐴 + 𝐵 ) |
11 |
|
csm |
⊢ ·ℎ |
12 |
10 5 11
|
co |
⊢ ( ( 𝐴 + 𝐵 ) ·ℎ 𝐶 ) |
13 |
0 5 11
|
co |
⊢ ( 𝐴 ·ℎ 𝐶 ) |
14 |
|
cva |
⊢ +ℎ |
15 |
3 5 11
|
co |
⊢ ( 𝐵 ·ℎ 𝐶 ) |
16 |
13 15 14
|
co |
⊢ ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( 𝐵 ·ℎ 𝐶 ) ) |
17 |
12 16
|
wceq |
⊢ ( ( 𝐴 + 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( 𝐵 ·ℎ 𝐶 ) ) |
18 |
8 17
|
wi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |