Metamath Proof Explorer


Axiom ax-hvdistr2

Description: Scalar multiplication distributive law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvdistr2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cc
2 0 1 wcel 𝐴 ∈ ℂ
3 cB 𝐵
4 3 1 wcel 𝐵 ∈ ℂ
5 cC 𝐶
6 chba
7 5 6 wcel 𝐶 ∈ ℋ
8 2 4 7 w3a ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ )
9 caddc +
10 0 3 9 co ( 𝐴 + 𝐵 )
11 csm ·
12 10 5 11 co ( ( 𝐴 + 𝐵 ) · 𝐶 )
13 0 5 11 co ( 𝐴 · 𝐶 )
14 cva +
15 3 5 11 co ( 𝐵 · 𝐶 )
16 13 15 14 co ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) )
17 12 16 wceq ( ( 𝐴 + 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) )
18 8 17 wi ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐶 ) ) )