Metamath Proof Explorer


Axiom ax-hvmul0

Description: Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid and hvsubval ). (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvmul0 ( 𝐴 ∈ ℋ → ( 0 · 𝐴 ) = 0 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 chba
2 0 1 wcel 𝐴 ∈ ℋ
3 cc0 0
4 csm ·
5 3 0 4 co ( 0 · 𝐴 )
6 c0v 0
7 5 6 wceq ( 0 · 𝐴 ) = 0
8 2 7 wi ( 𝐴 ∈ ℋ → ( 0 · 𝐴 ) = 0 )