Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-hvmulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ℎ 𝐶 ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | ⊢ 𝐴 | |
1 | cc | ⊢ ℂ | |
2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℂ |
3 | cB | ⊢ 𝐵 | |
4 | 3 1 | wcel | ⊢ 𝐵 ∈ ℂ |
5 | cC | ⊢ 𝐶 | |
6 | chba | ⊢ ℋ | |
7 | 5 6 | wcel | ⊢ 𝐶 ∈ ℋ |
8 | 2 4 7 | w3a | ⊢ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) |
9 | cmul | ⊢ · | |
10 | 0 3 9 | co | ⊢ ( 𝐴 · 𝐵 ) |
11 | csm | ⊢ ·ℎ | |
12 | 10 5 11 | co | ⊢ ( ( 𝐴 · 𝐵 ) ·ℎ 𝐶 ) |
13 | 3 5 11 | co | ⊢ ( 𝐵 ·ℎ 𝐶 ) |
14 | 0 13 11 | co | ⊢ ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) |
15 | 12 14 | wceq | ⊢ ( ( 𝐴 · 𝐵 ) ·ℎ 𝐶 ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) |
16 | 8 15 | wi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) ·ℎ 𝐶 ) = ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |