Metamath Proof Explorer


Axiom ax-hvmulass

Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvmulass ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cc
2 0 1 wcel 𝐴 ∈ ℂ
3 cB 𝐵
4 3 1 wcel 𝐵 ∈ ℂ
5 cC 𝐶
6 chba
7 5 6 wcel 𝐶 ∈ ℋ
8 2 4 7 w3a ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ )
9 cmul ·
10 0 3 9 co ( 𝐴 · 𝐵 )
11 csm ·
12 10 5 11 co ( ( 𝐴 · 𝐵 ) · 𝐶 )
13 3 5 11 co ( 𝐵 · 𝐶 )
14 0 13 11 co ( 𝐴 · ( 𝐵 · 𝐶 ) )
15 12 14 wceq ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) )
16 8 15 wi ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) )