Step |
Hyp |
Ref |
Expression |
0 |
|
vx |
⊢ 𝑥 |
1 |
|
vy |
⊢ 𝑦 |
2 |
1
|
cv |
⊢ 𝑦 |
3 |
0
|
cv |
⊢ 𝑥 |
4 |
2 3
|
wcel |
⊢ 𝑦 ∈ 𝑥 |
5 |
|
vz |
⊢ 𝑧 |
6 |
5
|
cv |
⊢ 𝑧 |
7 |
6 2
|
wcel |
⊢ 𝑧 ∈ 𝑦 |
8 |
7
|
wn |
⊢ ¬ 𝑧 ∈ 𝑦 |
9 |
8 5
|
wal |
⊢ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 |
10 |
4 9
|
wa |
⊢ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) |
11 |
10 1
|
wex |
⊢ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) |
12 |
6 3
|
wcel |
⊢ 𝑧 ∈ 𝑥 |
13 |
|
vw |
⊢ 𝑤 |
14 |
13
|
cv |
⊢ 𝑤 |
15 |
14 6
|
wcel |
⊢ 𝑤 ∈ 𝑧 |
16 |
14 2
|
wcel |
⊢ 𝑤 ∈ 𝑦 |
17 |
14 2
|
wceq |
⊢ 𝑤 = 𝑦 |
18 |
16 17
|
wo |
⊢ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) |
19 |
15 18
|
wb |
⊢ ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) |
20 |
19 13
|
wal |
⊢ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) |
21 |
12 20
|
wa |
⊢ ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) |
22 |
21 5
|
wex |
⊢ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) |
23 |
4 22
|
wi |
⊢ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
24 |
23 1
|
wal |
⊢ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
25 |
11 24
|
wa |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
26 |
25 0
|
wex |
⊢ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |