Metamath Proof Explorer


Axiom ax-pre-ltadd

Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, justified by Theorem axpre-ltadd . Normally new proofs would use axltadd . (New usage is discouraged.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion ax-pre-ltadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cr
2 0 1 wcel 𝐴 ∈ ℝ
3 cB 𝐵
4 3 1 wcel 𝐵 ∈ ℝ
5 cC 𝐶
6 5 1 wcel 𝐶 ∈ ℝ
7 2 4 6 w3a ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ )
8 cltrr <
9 0 3 8 wbr 𝐴 < 𝐵
10 caddc +
11 5 0 10 co ( 𝐶 + 𝐴 )
12 5 3 10 co ( 𝐶 + 𝐵 )
13 11 12 8 wbr ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 )
14 9 13 wi ( 𝐴 < 𝐵 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) )
15 7 14 wi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) )