Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Real and complex number postulates restated as axioms
ax-pre-mulgt0
Metamath Proof Explorer
Description: The product of two positive reals is positive. Axiom 21 of 22 for real
and complex numbers, justified by Theorem axpre-mulgt0 . Normally new
proofs would use axmulgt0 . (New usage is discouraged.) (Contributed by NM , 13-Oct-2005)
Ref
Expression
Assertion
ax-pre-mulgt0
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) → 0 <ℝ ( 𝐴 · 𝐵 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
⊢ 𝐴
1
cr
⊢ ℝ
2
0 1
wcel
⊢ 𝐴 ∈ ℝ
3
cB
⊢ 𝐵
4
3 1
wcel
⊢ 𝐵 ∈ ℝ
5
2 4
wa
⊢ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ )
6
cc0
⊢ 0
7
cltrr
⊢ <ℝ
8
6 0 7
wbr
⊢ 0 <ℝ 𝐴
9
6 3 7
wbr
⊢ 0 <ℝ 𝐵
10
8 9
wa
⊢ ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 )
11
cmul
⊢ ·
12
0 3 11
co
⊢ ( 𝐴 · 𝐵 )
13
6 12 7
wbr
⊢ 0 <ℝ ( 𝐴 · 𝐵 )
14
10 13
wi
⊢ ( ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) → 0 <ℝ ( 𝐴 · 𝐵 ) )
15
5 14
wi
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) → 0 <ℝ ( 𝐴 · 𝐵 ) ) )