Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Real and complex number postulates restated as axioms
ax-rnegex
Metamath Proof Explorer
Description: Existence of negative of real number. Axiom 15 of 22 for real and
complex numbers, justified by Theorem axrnegex . (Contributed by Eric
Schmidt , 21-May-2007)
Ref
Expression
Assertion
ax-rnegex
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
⊢ 𝐴
1
cr
⊢ ℝ
2
0 1
wcel
⊢ 𝐴 ∈ ℝ
3
vx
⊢ 𝑥
4
caddc
⊢ +
5
3
cv
⊢ 𝑥
6
0 5 4
co
⊢ ( 𝐴 + 𝑥 )
7
cc0
⊢ 0
8
6 7
wceq
⊢ ( 𝐴 + 𝑥 ) = 0
9
8 3 1
wrex
⊢ ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0
10
2 9
wi
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 )