Metamath Proof Explorer


Axiom ax-ros335

Description: Theorem 12. of RosserSchoenfeld p. 71. Theorem chpo1ubb states that the psi function is bounded by a linear term; this axiom postulates an upper bound for that linear term. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Assertion ax-ros335 𝑥 ∈ ℝ+ ( ψ ‘ 𝑥 ) < ( ( 1 . 0 3 8 8 3 ) · 𝑥 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 crp +
2 cchp ψ
3 0 cv 𝑥
4 3 2 cfv ( ψ ‘ 𝑥 )
5 clt <
6 c1 1
7 cdp .
8 cc0 0
9 c3 3
10 c8 8
11 10 9 cdp2 8 3
12 10 11 cdp2 8 8 3
13 9 12 cdp2 3 8 8 3
14 8 13 cdp2 0 3 8 8 3
15 6 14 7 co ( 1 . 0 3 8 8 3 )
16 cmul ·
17 15 3 16 co ( ( 1 . 0 3 8 8 3 ) · 𝑥 )
18 4 17 5 wbr ( ψ ‘ 𝑥 ) < ( ( 1 . 0 3 8 8 3 ) · 𝑥 )
19 18 0 1 wral 𝑥 ∈ ℝ+ ( ψ ‘ 𝑥 ) < ( ( 1 . 0 3 8 8 3 ) · 𝑥 )