Metamath Proof Explorer


Axiom ax-ros336

Description: Theorem 13. of RosserSchoenfeld p. 71. Theorem chpchtlim states that the psi and theta function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Assertion ax-ros336 𝑥 ∈ ℝ+ ( ( ψ ‘ 𝑥 ) − ( θ ‘ 𝑥 ) ) < ( ( 1 . 4 2 6 2 ) · ( √ ‘ 𝑥 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 crp +
2 cchp ψ
3 0 cv 𝑥
4 3 2 cfv ( ψ ‘ 𝑥 )
5 cmin
6 ccht θ
7 3 6 cfv ( θ ‘ 𝑥 )
8 4 7 5 co ( ( ψ ‘ 𝑥 ) − ( θ ‘ 𝑥 ) )
9 clt <
10 c1 1
11 cdp .
12 c4 4
13 c2 2
14 c6 6
15 14 13 cdp2 6 2
16 13 15 cdp2 2 6 2
17 12 16 cdp2 4 2 6 2
18 10 17 11 co ( 1 . 4 2 6 2 )
19 cmul ·
20 csqrt
21 3 20 cfv ( √ ‘ 𝑥 )
22 18 21 19 co ( ( 1 . 4 2 6 2 ) · ( √ ‘ 𝑥 ) )
23 8 22 9 wbr ( ( ψ ‘ 𝑥 ) − ( θ ‘ 𝑥 ) ) < ( ( 1 . 4 2 6 2 ) · ( √ ‘ 𝑥 ) )
24 23 0 1 wral 𝑥 ∈ ℝ+ ( ( ψ ‘ 𝑥 ) − ( θ ‘ 𝑥 ) ) < ( ( 1 . 4 2 6 2 ) · ( √ ‘ 𝑥 ) )