Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
The Ternary Goldbach Conjecture: Final Statement
ax-ros336
Metamath Proof Explorer
Description: Theorem 13. of RosserSchoenfeld p. 71. Theorem chpchtlim states that
the psi and theta function are asymtotic to each other; this axiom
postulates an upper bound for their difference. This is stated as an
axiom until a formal proof can be provided. (Contributed by Thierry
Arnoux , 28-Dec-2021)
Ref
Expression
Assertion
ax-ros336
⊢ ∀ 𝑥 ∈ ℝ+ ( ( ψ ‘ 𝑥 ) − ( θ ‘ 𝑥 ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) · ( √ ‘ 𝑥 ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
vx
⊢ 𝑥
1
crp
⊢ ℝ+
2
cchp
⊢ ψ
3
0
cv
⊢ 𝑥
4
3 2
cfv
⊢ ( ψ ‘ 𝑥 )
5
cmin
⊢ −
6
ccht
⊢ θ
7
3 6
cfv
⊢ ( θ ‘ 𝑥 )
8
4 7 5
co
⊢ ( ( ψ ‘ 𝑥 ) − ( θ ‘ 𝑥 ) )
9
clt
⊢ <
10
c1
⊢ 1
11
cdp
⊢ .
12
c4
⊢ 4
13
c2
⊢ 2
14
c6
⊢ 6
15
14 13
cdp2
⊢ _ 6 2
16
13 15
cdp2
⊢ _ 2 _ 6 2
17
12 16
cdp2
⊢ _ 4 _ 2 _ 6 2
18
10 17 11
co
⊢ ( 1 . _ 4 _ 2 _ 6 2 )
19
cmul
⊢ ·
20
csqrt
⊢ √
21
3 20
cfv
⊢ ( √ ‘ 𝑥 )
22
18 21 19
co
⊢ ( ( 1 . _ 4 _ 2 _ 6 2 ) · ( √ ‘ 𝑥 ) )
23
8 22 9
wbr
⊢ ( ( ψ ‘ 𝑥 ) − ( θ ‘ 𝑥 ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) · ( √ ‘ 𝑥 ) )
24
23 0 1
wral
⊢ ∀ 𝑥 ∈ ℝ+ ( ( ψ ‘ 𝑥 ) − ( θ ‘ 𝑥 ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) · ( √ ‘ 𝑥 ) )