Metamath Proof Explorer


Theorem ax10fromc7

Description: Rederivation of Axiom ax-10 from ax-c7 , ax-c4 , ax-c5 , ax-gen and propositional calculus. See axc7 for the derivation of ax-c7 from ax-10 . (Contributed by NM, 23-May-2008) (Proof modification is discouraged.) Use ax-10 instead. (New usage is discouraged.)

Ref Expression
Assertion ax10fromc7 ( ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 ax-c4 ( ∀ 𝑥 ( ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ¬ ∀ 𝑥 𝜑 ) → ( ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 ) )
2 ax-c5 ( ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ¬ ∀ 𝑥𝑥 𝜑 )
3 ax-c4 ( ∀ 𝑥 ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 ) )
4 id ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜑 )
5 3 4 mpg ( ∀ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )
6 2 5 nsyl ( ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ¬ ∀ 𝑥 𝜑 )
7 1 6 mpg ( ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )
8 ax-c7 ( ¬ ∀ 𝑥 ¬ ∀ 𝑥𝑥 𝜑 → ∀ 𝑥 𝜑 )
9 7 8 nsyl4 ( ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ ∀ 𝑥 𝜑 )