| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.26 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ↔ ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ) |
| 2 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 3 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 4 |
2 3
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) |
| 6 |
|
ax-5 |
⊢ ( 𝑣 ∈ 𝑣 → ∀ 𝑥 𝑣 ∈ 𝑣 ) |
| 7 |
|
ax-5 |
⊢ ( 𝑦 ∈ 𝑦 → ∀ 𝑣 𝑦 ∈ 𝑦 ) |
| 8 |
|
elequ1 |
⊢ ( 𝑣 = 𝑦 → ( 𝑣 ∈ 𝑣 ↔ 𝑦 ∈ 𝑣 ) ) |
| 9 |
|
elequ2 |
⊢ ( 𝑣 = 𝑦 → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑦 ) ) |
| 10 |
8 9
|
bitrd |
⊢ ( 𝑣 = 𝑦 → ( 𝑣 ∈ 𝑣 ↔ 𝑦 ∈ 𝑦 ) ) |
| 11 |
6 7 10
|
dvelimf-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑦 → ∀ 𝑥 𝑦 ∈ 𝑦 ) ) |
| 12 |
4
|
biimprcd |
⊢ ( 𝑦 ∈ 𝑦 → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) |
| 13 |
12
|
alimi |
⊢ ( ∀ 𝑥 𝑦 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) |
| 14 |
11 13
|
syl6 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑦 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ) |
| 16 |
5 15
|
sylbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ) |
| 18 |
|
elequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
| 19 |
|
elequ2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
| 20 |
18 19
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
| 21 |
20
|
sps-o |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
| 22 |
|
nfa1-o |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) |
| 23 |
21
|
imbi2d |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 24 |
22 23
|
albid |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 25 |
21 24
|
imbi12d |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 27 |
17 26
|
mpbid |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 28 |
27
|
exp32 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 29 |
1 28
|
sylbir |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 30 |
|
elequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
| 31 |
30
|
ad2antll |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
| 32 |
|
ax-c14 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑦 ∈ 𝑤 → ∀ 𝑥 𝑦 ∈ 𝑤 ) ) ) |
| 33 |
32
|
impcom |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑦 ∈ 𝑤 → ∀ 𝑥 𝑦 ∈ 𝑤 ) ) |
| 34 |
33
|
adantrr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 ∈ 𝑤 → ∀ 𝑥 𝑦 ∈ 𝑤 ) ) |
| 35 |
30
|
biimprcd |
⊢ ( 𝑦 ∈ 𝑤 → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) |
| 36 |
35
|
alimi |
⊢ ( ∀ 𝑥 𝑦 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) |
| 37 |
34 36
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ) |
| 38 |
31 37
|
sylbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ) |
| 39 |
38
|
adantll |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ) |
| 40 |
|
elequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
| 41 |
40
|
sps-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
| 42 |
41
|
imbi2d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ↔ ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 43 |
42
|
dral2-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 44 |
41 43
|
imbi12d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 ∈ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 46 |
39 45
|
mpbid |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 47 |
46
|
exp32 |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 48 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
| 49 |
48
|
ad2antll |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
| 50 |
|
ax-c14 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑦 → ∀ 𝑥 𝑧 ∈ 𝑦 ) ) ) |
| 51 |
50
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 ∈ 𝑦 → ∀ 𝑥 𝑧 ∈ 𝑦 ) ) |
| 52 |
51
|
adantrr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑦 → ∀ 𝑥 𝑧 ∈ 𝑦 ) ) |
| 53 |
48
|
biimprcd |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) |
| 54 |
53
|
alimi |
⊢ ( ∀ 𝑥 𝑧 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) |
| 55 |
52 54
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 56 |
49 55
|
sylbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 57 |
56
|
adantlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 58 |
19
|
sps-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤 ) ) |
| 59 |
58
|
imbi2d |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 60 |
59
|
dral2-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 61 |
58 60
|
imbi12d |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑧 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 62 |
61
|
ad2antlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑧 ∈ 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 63 |
57 62
|
mpbid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 64 |
63
|
exp32 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 65 |
|
ax6ev |
⊢ ∃ 𝑢 𝑢 = 𝑤 |
| 66 |
|
ax6ev |
⊢ ∃ 𝑣 𝑣 = 𝑧 |
| 67 |
|
ax-1 |
⊢ ( 𝑣 ∈ 𝑢 → ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ) |
| 68 |
67
|
alrimiv |
⊢ ( 𝑣 ∈ 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ) |
| 69 |
|
elequ1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢 ) ) |
| 70 |
|
elequ2 |
⊢ ( 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤 ) ) |
| 71 |
69 70
|
sylan9bb |
⊢ ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤 ) ) |
| 72 |
71
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤 ) ) |
| 73 |
|
dveeq2-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑣 = 𝑧 → ∀ 𝑥 𝑣 = 𝑧 ) ) |
| 74 |
|
dveeq2-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑢 = 𝑤 → ∀ 𝑥 𝑢 = 𝑤 ) ) |
| 75 |
73 74
|
im2anan9 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) ) |
| 76 |
75
|
imp |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) |
| 77 |
|
19.26 |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ↔ ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) |
| 78 |
76 77
|
sylibr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) |
| 79 |
|
nfa1-o |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) |
| 80 |
71
|
sps-o |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 ∈ 𝑢 ↔ 𝑧 ∈ 𝑤 ) ) |
| 81 |
80
|
imbi2d |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ↔ ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 82 |
79 81
|
albid |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 83 |
78 82
|
syl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 84 |
72 83
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ( 𝑣 ∈ 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 ∈ 𝑢 ) ) ↔ ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 85 |
68 84
|
mpbii |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 86 |
85
|
exp32 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 87 |
86
|
exlimdv |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑣 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 88 |
66 87
|
mpi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 89 |
88
|
exlimdv |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑢 𝑢 = 𝑤 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 90 |
65 89
|
mpi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) |
| 91 |
90
|
a1d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |
| 92 |
91
|
a1d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) ) |
| 93 |
29 47 64 92
|
4cases |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 ∈ 𝑤 ) ) ) ) |