Metamath Proof Explorer


Theorem ax12el

Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . Atomic formula for membership predicate. (Contributed by NM, 22-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax12el ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )

Proof

Step Hyp Ref Expression
1 19.26 ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) ↔ ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) )
2 elequ1 ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑥 ) )
3 elequ2 ( 𝑥 = 𝑦 → ( 𝑦𝑥𝑦𝑦 ) )
4 2 3 bitrd ( 𝑥 = 𝑦 → ( 𝑥𝑥𝑦𝑦 ) )
5 4 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) → ( 𝑥𝑥𝑦𝑦 ) )
6 ax-5 ( 𝑣𝑣 → ∀ 𝑥 𝑣𝑣 )
7 ax-5 ( 𝑦𝑦 → ∀ 𝑣 𝑦𝑦 )
8 elequ1 ( 𝑣 = 𝑦 → ( 𝑣𝑣𝑦𝑣 ) )
9 elequ2 ( 𝑣 = 𝑦 → ( 𝑦𝑣𝑦𝑦 ) )
10 8 9 bitrd ( 𝑣 = 𝑦 → ( 𝑣𝑣𝑦𝑦 ) )
11 6 7 10 dvelimf-o ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦𝑦 → ∀ 𝑥 𝑦𝑦 ) )
12 4 biimprcd ( 𝑦𝑦 → ( 𝑥 = 𝑦𝑥𝑥 ) )
13 12 alimi ( ∀ 𝑥 𝑦𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑥 ) )
14 11 13 syl6 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑥 ) ) )
15 14 adantr ( ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) → ( 𝑦𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑥 ) ) )
16 5 15 sylbid ( ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) → ( 𝑥𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑥 ) ) )
17 16 adantl ( ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑥𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑥 ) ) )
18 elequ1 ( 𝑥 = 𝑧 → ( 𝑥𝑥𝑧𝑥 ) )
19 elequ2 ( 𝑥 = 𝑤 → ( 𝑧𝑥𝑧𝑤 ) )
20 18 19 sylan9bb ( ( 𝑥 = 𝑧𝑥 = 𝑤 ) → ( 𝑥𝑥𝑧𝑤 ) )
21 20 sps-o ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) → ( 𝑥𝑥𝑧𝑤 ) )
22 nfa1-o 𝑥𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 )
23 21 imbi2d ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑦𝑥𝑥 ) ↔ ( 𝑥 = 𝑦𝑧𝑤 ) ) )
24 22 23 albid ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
25 21 24 imbi12d ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) → ( ( 𝑥𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑥 ) ) ↔ ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
26 25 adantr ( ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( ( 𝑥𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑥 ) ) ↔ ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
27 17 26 mpbid ( ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
28 27 exp32 ( ∀ 𝑥 ( 𝑥 = 𝑧𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) ) )
29 1 28 sylbir ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) ) )
30 elequ1 ( 𝑥 = 𝑦 → ( 𝑥𝑤𝑦𝑤 ) )
31 30 ad2antll ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑥𝑤𝑦𝑤 ) )
32 ax-c14 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑦𝑤 → ∀ 𝑥 𝑦𝑤 ) ) )
33 32 impcom ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑦𝑤 → ∀ 𝑥 𝑦𝑤 ) )
34 33 adantrr ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑦𝑤 → ∀ 𝑥 𝑦𝑤 ) )
35 30 biimprcd ( 𝑦𝑤 → ( 𝑥 = 𝑦𝑥𝑤 ) )
36 35 alimi ( ∀ 𝑥 𝑦𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑤 ) )
37 34 36 syl6 ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑦𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑤 ) ) )
38 31 37 sylbid ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑥𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑤 ) ) )
39 38 adantll ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑥𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑤 ) ) )
40 elequ1 ( 𝑥 = 𝑧 → ( 𝑥𝑤𝑧𝑤 ) )
41 40 sps-o ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥𝑤𝑧𝑤 ) )
42 41 imbi2d ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑦𝑥𝑤 ) ↔ ( 𝑥 = 𝑦𝑧𝑤 ) ) )
43 42 dral2-o ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑤 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
44 41 43 imbi12d ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑤 ) ) ↔ ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
45 44 ad2antrr ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( ( 𝑥𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑥𝑤 ) ) ↔ ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
46 39 45 mpbid ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
47 46 exp32 ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) ) )
48 elequ2 ( 𝑥 = 𝑦 → ( 𝑧𝑥𝑧𝑦 ) )
49 48 ad2antll ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑧𝑥𝑧𝑦 ) )
50 ax-c14 ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧𝑦 → ∀ 𝑥 𝑧𝑦 ) ) )
51 50 imp ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧𝑦 → ∀ 𝑥 𝑧𝑦 ) )
52 51 adantrr ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑧𝑦 → ∀ 𝑥 𝑧𝑦 ) )
53 48 biimprcd ( 𝑧𝑦 → ( 𝑥 = 𝑦𝑧𝑥 ) )
54 53 alimi ( ∀ 𝑥 𝑧𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑥 ) )
55 52 54 syl6 ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑧𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑥 ) ) )
56 49 55 sylbid ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑧𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑥 ) ) )
57 56 adantlr ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑧𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑥 ) ) )
58 19 sps-o ( ∀ 𝑥 𝑥 = 𝑤 → ( 𝑧𝑥𝑧𝑤 ) )
59 58 imbi2d ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑥 = 𝑦𝑧𝑥 ) ↔ ( 𝑥 = 𝑦𝑧𝑤 ) ) )
60 59 dral2-o ( ∀ 𝑥 𝑥 = 𝑤 → ( ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
61 58 60 imbi12d ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑧𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑥 ) ) ↔ ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
62 61 ad2antlr ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( ( 𝑧𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑥 ) ) ↔ ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
63 57 62 mpbid ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 ) ) → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
64 63 exp32 ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) ) )
65 ax6ev 𝑢 𝑢 = 𝑤
66 ax6ev 𝑣 𝑣 = 𝑧
67 ax-1 ( 𝑣𝑢 → ( 𝑥 = 𝑦𝑣𝑢 ) )
68 67 alrimiv ( 𝑣𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦𝑣𝑢 ) )
69 elequ1 ( 𝑣 = 𝑧 → ( 𝑣𝑢𝑧𝑢 ) )
70 elequ2 ( 𝑢 = 𝑤 → ( 𝑧𝑢𝑧𝑤 ) )
71 69 70 sylan9bb ( ( 𝑣 = 𝑧𝑢 = 𝑤 ) → ( 𝑣𝑢𝑧𝑤 ) )
72 71 adantl ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧𝑢 = 𝑤 ) ) → ( 𝑣𝑢𝑧𝑤 ) )
73 dveeq2-o ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑣 = 𝑧 → ∀ 𝑥 𝑣 = 𝑧 ) )
74 dveeq2-o ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑢 = 𝑤 → ∀ 𝑥 𝑢 = 𝑤 ) )
75 73 74 im2anan9 ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ( 𝑣 = 𝑧𝑢 = 𝑤 ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) )
76 75 imp ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧𝑢 = 𝑤 ) ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) )
77 19.26 ( ∀ 𝑥 ( 𝑣 = 𝑧𝑢 = 𝑤 ) ↔ ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) )
78 76 77 sylibr ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧𝑢 = 𝑤 ) ) → ∀ 𝑥 ( 𝑣 = 𝑧𝑢 = 𝑤 ) )
79 nfa1-o 𝑥𝑥 ( 𝑣 = 𝑧𝑢 = 𝑤 )
80 71 sps-o ( ∀ 𝑥 ( 𝑣 = 𝑧𝑢 = 𝑤 ) → ( 𝑣𝑢𝑧𝑤 ) )
81 80 imbi2d ( ∀ 𝑥 ( 𝑣 = 𝑧𝑢 = 𝑤 ) → ( ( 𝑥 = 𝑦𝑣𝑢 ) ↔ ( 𝑥 = 𝑦𝑧𝑤 ) ) )
82 79 81 albid ( ∀ 𝑥 ( 𝑣 = 𝑧𝑢 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦𝑣𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
83 78 82 syl ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧𝑢 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑦𝑣𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
84 72 83 imbi12d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧𝑢 = 𝑤 ) ) → ( ( 𝑣𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦𝑣𝑢 ) ) ↔ ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
85 68 84 mpbii ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧𝑢 = 𝑤 ) ) → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
86 85 exp32 ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) ) )
87 86 exlimdv ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑣 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) ) )
88 66 87 mpi ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑢 = 𝑤 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
89 88 exlimdv ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑢 𝑢 = 𝑤 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
90 65 89 mpi ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) )
91 90 a1d ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑥 = 𝑦 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )
92 91 a1d ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) ) )
93 29 47 64 92 4cases ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦𝑧𝑤 ) ) ) )