Step |
Hyp |
Ref |
Expression |
1 |
|
19.26 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ↔ ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ) |
2 |
|
equid |
⊢ 𝑥 = 𝑥 |
3 |
2
|
a1i |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) |
4 |
3
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) |
5 |
4
|
a1i |
⊢ ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) |
6 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑥 ) ) |
7 |
|
equequ2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
8 |
6 7
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
9 |
8
|
sps-o |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
10 |
|
nfa1-o |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) |
11 |
9
|
imbi2d |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
12 |
10 11
|
albid |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
13 |
9 12
|
imbi12d |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
15 |
5 14
|
mpbii |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
16 |
15
|
exp32 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
17 |
1 16
|
sylbir |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
18 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
19 |
18
|
ad2antll |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
20 |
|
axc9 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) ) |
21 |
20
|
impcom |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) |
22 |
21
|
adantrr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) |
23 |
|
equtrr |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) |
24 |
23
|
alimi |
⊢ ( ∀ 𝑥 𝑦 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) |
25 |
22 24
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
26 |
19 25
|
sylbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
27 |
26
|
adantll |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
28 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
29 |
28
|
sps-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
30 |
29
|
imbi2d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
31 |
30
|
dral2-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
32 |
29 31
|
imbi12d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
34 |
27 33
|
mpbid |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
35 |
34
|
exp32 |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
36 |
|
equequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) ) |
37 |
36
|
ad2antll |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) ) |
38 |
|
axc9 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) ) |
39 |
38
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
40 |
39
|
adantrr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
41 |
36
|
biimprcd |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) |
42 |
41
|
alimi |
⊢ ( ∀ 𝑥 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) |
43 |
40 42
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
44 |
37 43
|
sylbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
45 |
44
|
adantlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
46 |
7
|
sps-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
47 |
46
|
imbi2d |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
48 |
47
|
dral2-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
49 |
46 48
|
imbi12d |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
50 |
49
|
ad2antlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
51 |
45 50
|
mpbid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
52 |
51
|
exp32 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
53 |
|
ax6ev |
⊢ ∃ 𝑢 𝑢 = 𝑤 |
54 |
|
ax6ev |
⊢ ∃ 𝑣 𝑣 = 𝑧 |
55 |
|
ax-1 |
⊢ ( 𝑣 = 𝑢 → ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) |
56 |
55
|
alrimiv |
⊢ ( 𝑣 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) |
57 |
|
equequ1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑢 ) ) |
58 |
|
equequ2 |
⊢ ( 𝑢 = 𝑤 → ( 𝑧 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
59 |
57 58
|
sylan9bb |
⊢ ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
60 |
59
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
61 |
|
dveeq2-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑣 = 𝑧 → ∀ 𝑥 𝑣 = 𝑧 ) ) |
62 |
|
dveeq2-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑢 = 𝑤 → ∀ 𝑥 𝑢 = 𝑤 ) ) |
63 |
61 62
|
im2anan9 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) ) |
64 |
63
|
imp |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) |
65 |
|
19.26 |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ↔ ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) |
66 |
64 65
|
sylibr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) |
67 |
|
nfa1-o |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) |
68 |
59
|
sps-o |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
69 |
68
|
imbi2d |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
70 |
67 69
|
albid |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
71 |
66 70
|
syl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
72 |
60 71
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ( 𝑣 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
73 |
56 72
|
mpbii |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
74 |
73
|
exp32 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
75 |
74
|
exlimdv |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑣 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
76 |
54 75
|
mpi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
77 |
76
|
exlimdv |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑢 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
78 |
53 77
|
mpi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
79 |
78
|
a1d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
80 |
79
|
a1d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
81 |
17 35 52 80
|
4cases |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |