| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.26 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ↔ ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ) |
| 2 |
|
equid |
⊢ 𝑥 = 𝑥 |
| 3 |
2
|
a1i |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) |
| 4 |
3
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) |
| 5 |
4
|
a1i |
⊢ ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) |
| 6 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑥 ) ) |
| 7 |
|
equequ2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
| 8 |
6 7
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
| 9 |
8
|
sps-o |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( 𝑥 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
| 10 |
|
nfa1-o |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) |
| 11 |
9
|
imbi2d |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 12 |
10 11
|
albid |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 13 |
9 12
|
imbi12d |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 15 |
5 14
|
mpbii |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 16 |
15
|
exp32 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 17 |
1 16
|
sylbir |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 18 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
| 19 |
18
|
ad2antll |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
| 20 |
|
axc9 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) ) |
| 21 |
20
|
impcom |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) |
| 22 |
21
|
adantrr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 = 𝑤 → ∀ 𝑥 𝑦 = 𝑤 ) ) |
| 23 |
|
equtrr |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) |
| 24 |
23
|
alimi |
⊢ ( ∀ 𝑥 𝑦 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) |
| 25 |
22 24
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑦 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
| 26 |
19 25
|
sylbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
| 27 |
26
|
adantll |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ) |
| 28 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
| 29 |
28
|
sps-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
| 30 |
29
|
imbi2d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 31 |
30
|
dral2-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 32 |
29 31
|
imbi12d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 33 |
32
|
ad2antrr |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑥 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑤 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 34 |
27 33
|
mpbid |
⊢ ( ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 35 |
34
|
exp32 |
⊢ ( ( ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 36 |
|
equequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) ) |
| 37 |
36
|
ad2antll |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑦 ) ) |
| 38 |
|
axc9 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) ) |
| 39 |
38
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
| 40 |
39
|
adantrr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
| 41 |
36
|
biimprcd |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) |
| 42 |
41
|
alimi |
⊢ ( ∀ 𝑥 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) |
| 43 |
40 42
|
syl6 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑦 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
| 44 |
37 43
|
sylbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
| 45 |
44
|
adantlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ) |
| 46 |
7
|
sps-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
| 47 |
46
|
imbi2d |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 48 |
47
|
dral2-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 49 |
46 48
|
imbi12d |
⊢ ( ∀ 𝑥 𝑥 = 𝑤 → ( ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( ( 𝑧 = 𝑥 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑥 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 51 |
45 50
|
mpbid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 52 |
51
|
exp32 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 53 |
|
ax6ev |
⊢ ∃ 𝑢 𝑢 = 𝑤 |
| 54 |
|
ax6ev |
⊢ ∃ 𝑣 𝑣 = 𝑧 |
| 55 |
|
ax-1 |
⊢ ( 𝑣 = 𝑢 → ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) |
| 56 |
55
|
alrimiv |
⊢ ( 𝑣 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) |
| 57 |
|
equequ1 |
⊢ ( 𝑣 = 𝑧 → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑢 ) ) |
| 58 |
|
equequ2 |
⊢ ( 𝑢 = 𝑤 → ( 𝑧 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
| 59 |
57 58
|
sylan9bb |
⊢ ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
| 60 |
59
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
| 61 |
|
dveeq2-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( 𝑣 = 𝑧 → ∀ 𝑥 𝑣 = 𝑧 ) ) |
| 62 |
|
dveeq2-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( 𝑢 = 𝑤 → ∀ 𝑥 𝑢 = 𝑤 ) ) |
| 63 |
61 62
|
im2anan9 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) ) |
| 64 |
63
|
imp |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) |
| 65 |
|
19.26 |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ↔ ( ∀ 𝑥 𝑣 = 𝑧 ∧ ∀ 𝑥 𝑢 = 𝑤 ) ) |
| 66 |
64 65
|
sylibr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) |
| 67 |
|
nfa1-o |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) |
| 68 |
59
|
sps-o |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( 𝑣 = 𝑢 ↔ 𝑧 = 𝑤 ) ) |
| 69 |
68
|
imbi2d |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 70 |
67 69
|
albid |
⊢ ( ∀ 𝑥 ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 71 |
66 70
|
syl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 72 |
60 71
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( ( 𝑣 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑣 = 𝑢 ) ) ↔ ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 73 |
56 72
|
mpbii |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ∧ ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑤 ) ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 74 |
73
|
exp32 |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 75 |
74
|
exlimdv |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑣 𝑣 = 𝑧 → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 76 |
54 75
|
mpi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 77 |
76
|
exlimdv |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ∃ 𝑢 𝑢 = 𝑤 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 78 |
53 77
|
mpi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) |
| 79 |
78
|
a1d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |
| 80 |
79
|
a1d |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) ) |
| 81 |
17 35 52 80
|
4cases |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 = 𝑦 → ( 𝑧 = 𝑤 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑧 = 𝑤 ) ) ) ) |