Metamath Proof Explorer


Theorem ax12ev2

Description: Version of ax12v2 rewritten to use an existential quantifier. One direction of sbalex without the universal quantifier, avoiding ax-10 . (Contributed by SN, 14-Aug-2025)

Ref Expression
Assertion ax12ev2 ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ( 𝑥 = 𝑦𝜑 ) )

Proof

Step Hyp Ref Expression
1 exnalimn ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) )
2 ax12v2 ( 𝑥 = 𝑦 → ( ¬ 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) )
3 2 con1d ( 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) → 𝜑 ) )
4 1 3 biimtrid ( 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) → 𝜑 ) )
5 4 com12 ( ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) → ( 𝑥 = 𝑦𝜑 ) )