Description: Version of ax12v2 rewritten to use an existential quantifier. One direction of sbalex without the universal quantifier, avoiding ax-10 . (Contributed by SN, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ax12ev2 | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnalimn | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) | |
2 | ax12v2 | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) | |
3 | 2 | con1d | ⊢ ( 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) → 𝜑 ) ) |
4 | 1 3 | biimtrid | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝜑 ) ) |
5 | 4 | com12 | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |