Description: Version of ax12v2 rewritten to use an existential quantifier. One direction of sbalex without the universal quantifier, avoiding ax-10 . (Contributed by SN, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax12ev2 | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnalimn | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) | |
| 2 | ax12v2 | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) | |
| 3 | 2 | con1d | ⊢ ( 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) → 𝜑 ) ) |
| 4 | 1 3 | biimtrid | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝜑 ) ) |
| 5 | 4 | com12 | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |